ارزیابی کارایی مدل‌ LSTM در پیش‌بینی جریان روزانه ورودی به مخازن سدها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

2 استاد، گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

3 گروه آب و محیط زیست، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

پیش‌بینی زمان واقعی جریان روزانه ورودی به مخازن با افق پیشبینی چند گام جلوتر جهت برنامه‌ریزی و مدیریت منابع آب اهمیت زیادی دارد. با وجود مطالعات زیاد پیش‌بینی جریان با روش‌های یادگیری ماشین، مطالعات کمی برای بررسی قابلیت‌های پیش‌بینی طولانی مدت (چند گام جلوتر) این روش‌ها و به دست آوردن بینشی نسبت به مقایسه سامان‌مند عملکرد پیش‌بینی مدل در کوتاه‌مدت انجام شده است. در این پژوهش با استفاده از سامانه استنتاج عصبی-فازی تطبیقی (ANFIS) و شبکه حافظه کوتاه و بلند مدت (LSTM) پیش‌بینی جریان روزانه ورودی به مخزن سیمره تا ۷ روز آینده انجام شد. برای این کار از داده‌های روزانه بارش، دما و جریان ورودی به سیمره از سال ۱۳۹1 تا ۱۳۹۷ جهت انجام مدل سازی استفاده شده‌ است. نتایج نشان داد که در پیش‌بینی روزانه چند گام جلوتر، عملکرد مدل LSTM بهتر از ANFIS است به‌طوری‌که بیشینه و کمینه مقدار ضریب نش در افق پیش‌بینی تا هفت روز آینده به ترتیب برای مدل LSTM برابر 971/0 و 628/0 و برای مدل ANFIS برابر 858/0 و 393/0 می‌باشد. تنظیم بهینه پارامترهای مربوط به تعداد نرون‌ها در هر لایه، تعداد تکرارها و تعداد دسته‌ها در مدل‌ LSTM، کلیدی برای پتانسیل بالای مدل جهت پیش‌بینی جریان تا افق پیش‌بینی هفت روز آینده می‌باشد. درنهایت عملکرد LSTM جهت پیش‌بینی جریان ورودی به سیمره در سیلاب 98 ارزیابی و مشخص شد که جریان‌های سیلابی را با دقت قابل قبولی تا افق پیش‌بینی 7 روز آینده، پیش‌بینی کرده است. این یافته‌ها نشان می‌دهد که LSTM می‌تواند در پیش‌بینی جریان روزانه مناسب باشد. بنابراین برای کمک به تصمیم‌گیری‌های راهبردی در مدیریت منابع آب بخصوص در شرایط سیلابی می توان از آن بهره گرفت

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Performance evaluation of the LSTM Model forecasting daily inflow into dams reservoirs

نویسندگان [English]

  • masoumeh zeinalie 1
  • omid bozorg haddad 1
  • Mehdi Yasi 2
  • Hosein Alizadeh 3
1 . Department of Irrigation & Reclamation Engineering, Faculty of Agricultural Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Tehran, Iran.
2 Professor,, Department of Irrigation and Reclamation Engineering, Faculty of Agriculture, University of Tehran, Karaj, Iran.
3 School of Civil Engineering, Iran University of Science and Technology
چکیده [English]

Real-time forecasting of daily inflows to reservoirs with a prediction horizon that extends several steps into the future is crucial for water resource planning and management. Despite numerous studies on inflow prediction using machine learning methods, few studies have investigated the predictive capabilities of these approaches with long lead time (several steps ahead) or gained insights through systematic comparisons of model predictive performance in the short term. In this study, the daily inflow to the Seimareh reservoir was predicted for the next 7 days using the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the Long Short-Term Memory (LSTM) network. For this purpose, daily data on precipitation, temperature and inflow to the Seimareh reservoir from 2012 to 2018 were used for modeling. The results showed that the performance of the LSTM model was better than that of ANFIS in the daily forecast in several steps. Specifically, the maximum and minimum values of the Nash coefficient in the forecast horizon for the next seven days were 0.971 and 0.628 for the LSTM model and 0.858 and 0.393 for the ANFIS model, respectively. The optimal setting of the parameters, including the number of neurons in each layer, the number of epochs and the stack size in the LSTM model, is the key to the model's high potential to predict the inflow for the next seven days. Finally, the performance of the LSTM model in predicting the inflow to Seimareh during the 2019 flood was evaluated and it was found to predict flood discharges with acceptable accuracy up to the forecast horizon of the next seven days. These results indicate that the LSTM model is suitable for forecasting daily inflow and can help make strategic decisions in water resource management, especially under flood conditions.

کلیدواژه‌ها [English]

  • daily reservoir inflow forecast
  • flood management
  • long lead-time forecast
  • machine learning

EXTENDED ABSTRACT

Background and purpose

Real-time forecasting of daily inflows to reservoirs with a prediction horizon that extends several steps into the future is crucial for water resource planning and management. Despite numerous studies on inflow prediction using machine learning methods, few have investigated the predictive capabilities of these approaches with long lead time (several steps ahead) or gained insights through systematic comparisons of model predictive performance in the short term. Therefore, in the present study, an advanced type of recurrent neural network called the LSTM model has been introduced to predict the daily inflow to dam reservoirs, addressing the flaws and defects of previously used methods. LSTM is a type of deep learning neural network that uses complex and combined functions instead of simple functions to regulate and strengthen short-term memory. By optimally setting modeling parameters such as the number of neurons in each layer, the number of iterations, and the number of categories, the LSTM model has a high potential for long-term prediction. Therefore, the purpose of this research is to evaluate the efficiency of and compare the machine learning models of the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the Long Short-Term Memory (LSTM) network in predicting the daily inflow to dam reservoirs. Subsequently, the inflow to the Seimareh reservoir is modeled using these methods, with a particular focus on long-term forecasting (7 days ahead). Finally, the superior model is used to predict the inflow to the reservoir under flood conditions.

Materials and methods

The stages of the research include three main parts: data collection, data pre-processing, and modeling. First, the effectiveness of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model and the Long Short-Term Memory (LSTM) network was evaluated to predict the daily inflow to the Seimareh reservoir in the Karkheh basin, for a forecast horizon of the next 7 days. For this purpose, daily data on precipitation, temperature, and inflow to Seimareh from 2012 to 2018 were used for modeling. Then, using the superior model that is selected based on the evaluation indicators, the daily inflow to the Seimareh reservoir was forecasted for the next 7 days during the flood of 2019.

Findings

In this section, the evaluation indices of the Nash coefficient, correlation coefficient, root mean square error, and bias value for selected models in the forecast horizons of one to seven days are presented. For the ANFIS model, the further the prediction horizon extends, the lower the value of the explanation coefficient, leading to decreased performance in simulating abnormal flow values and an increase in the number of simulated outliers. Regarding the flow simulated with the LSTM model in this case study, it cannot be said that the accuracy of the simulation decreases as the horizon extends. For instance, in the forecast horizon of the next seven days, the flow simulation is better than that for the next six days, and the performance of the model for one, two, and five days is better than for the other horizons. In general, the LSTM model has performed well in simulating abnormal flow values, and the number of simulated outliers is not significant across all forecast horizons.

Conclusion

The results showed that the performance of the LSTM model is better than that of ANFIS in daily forecasting several steps ahead. The maximum and minimum values of the Nash coefficient in the forecast horizon for the next seven days were 0.971 and 0.628, respectively, for the LSTM model, and 0.858 and 0.393 for the ANFIS model. The optimal setting of parameters, including the number of neurons in each layer, the number of iterations, and the number of categories in the LSTM model, is key to the model's high potential to predict flow up to the forecast horizon of the next seven days. Finally, the performance of the LSTM model in predicting the inflow to Seimareh during the flood of 2019 was evaluated, and it was found to predict the flood flows with acceptable accuracy up to the forecast horizon of the next 7 days. This study can provide valuable insights to water resource managers for planning and managing daily reservoir discharge in real-time operations. findings show that the LSTM model is suitable for forecasting daily flow. Therefore, it can be used to aid strategic decisions in the management of water resources, especially under flood conditions.

Author Contributions

All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

If the study did not report any data, you might add “Not applicable” here.

 

 

Acknowledgements

The authors would like to thank all participants of the present study.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Babaei, M., Moeini, R., & Ehsanzadeh, E. (2019). Artificial neural network and support vector machine models for inflow prediction of dam reservoir (case study: Zayandehroud dam reservoir). Water Resources Management, 33, 2203-2218.
Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Cheng, M., Fang, F., Kinouchi, T., Navon, I. M., & Pain, C. C. (2020). Long lead-time daily and monthly streamflow forecasting using machine learning methods. Journal of Hydrology590, 125376.
Dehghani, M., Saghafian, B., Rivaz, F., & Khodadadi, A. (2015). Monthly stream flow forecasting via dynamic spatio-temporal models. Stochastic environmental research and risk assessment29, 861-874.
Fathian, F., Mehdizadeh, S., Sales, A. K., & Safari, M. J. S. (2019). Hybrid models to improve the monthly river flow prediction: Integrating artificial intelligence and non-linear time series models. Journal of Hydrology575, 1200-1213.
Han, H., Choi, C., Jung, J., & Kim, H. S. (2021). Application of sequence to sequence learning based LSTM model (LSTM-s2s) for forecasting dam inflow. Journal of Korea Water Resources Association, 54(3), 157-166.
Hochreiter, S., Schmidhuber, J., (1997). Long short-term memory. Neural Comput. 9, 1735–1780.
Hu, C., Wu, Q., Li, H., Jian, S., Li, N., & Lou, Z. (2018). Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water10(11), 1543.
Hu, R., Fang, F., Pain, C. C., & Navon, I. M. (2019). Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method. Journal of Hydrology575, 911-920.
Khorram, S., & Jehbez, N. (2023). A hybrid CNN-LSTM approach for monthly reservoir inflow forecasting. Water Resources Management, 37(10), 4097-4121.
Kişi, Ö. (2009). "Evolutionary fuzzy models for river suspended sediment concentration estimation." Journal of Hydrology. 372(1–4): 68-79.
Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfall–runoff modelling using long short-term memory (LSTM) networks. Hydrology and Earth System Sciences22(11), 6005-6022.
Kumar, S., Tiwari, M. K., Chatterjee, C., & Mishra, A. (2015). Reservoir inflow forecasting using ensemble models based on neural networks, wavelet analysis, and bootstrap method. Water resources management, 29(13), 4863-4883.
Latif, S. D., Ahmed, A. N., Sathiamurthy, E., Huang, Y. F., & El-Shafie, A. (2021). Evaluation of deep learning algorithm for inflow forecasting: a case study of Durian Tunggal Reservoir, Peninsular Malaysia. Natural Hazards, 109(1), 351-369
Le, X. H., Ho, H. V., Lee, G., & Jung, S. (2019). Application of long short-term memory (LSTM) neural network for flood forecasting. Water11(7), 1387.
Lee, S., & Kim, J. (2021). Predicting inflow rate of the Soyang river dam using deep learning techniques. Water, 13(17), 2447.
Man, Y., Yang, Q., Shao, J., Wang, G., Bai, L., & Xue, Y. (2023). Enhanced LSTM model for daily runoff prediction in the upper Huai River Basin, China. Engineering, 24, 229-238.
Milly, P. C., Dunne, K. A., & Vecchia, A. V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature438(7066), 347-350.
Misaghi, F. (2016). Forecasting of the Alavian Dam Inflow Water Using Optimized Adaptive Neuro-Fuzzy Inference System (OANFIS). Iranian Journal of Soil and Water Research, 47(3), 439-448. )In Persian(.
Mouatadid, S., Adamowski, J. F., Tiwari, M. K., & Quilty, J. M. (2019). Coupling the maximum overlap discrete wavelet transform and long short-term memory networks for irrigation flow forecasting. Agricultural Water Management219, 72-85.
Mousavi Nadushni, S, S., BaniHabib, M. E., & Bandari, R. (2013). prediction of daily inflow Dez dam reservoir using time series models, 11th National Seminar on Irrigation and Evaporation Reduction, Kerman, https://civilica .com/doc/157849. )In Persian(.
Mousavi, S. F., & Mahjoobi, J. (2019). Real-time streamflow prediction for optimal water resource management: Challenges and advances. Journal of Hydrology, 123(4), 567-581. https://doi.org/10.1016/j.jhydrol.2019.08.015
National Flood Report Special Committee (2019), Hydrology and Water Resources Working Group, Reservoir Management Committee. (In Persian).
Nayak, P. C., K. P. Sudheer, D. M. Rangan & K. S. Ramasastri, (2004). "A neuro-fuzzy computing technique for modeling hydrological time series." Journal of Hydrology 291(1–2): 52-66.
Ni, L., Wang, D., Singh, V. P., Wu, J., Wang, Y., Tao, Y., & Zhang, J. (2020). Streamflow and rainfall forecasting by two long short-term memory-based models. Journal of Hydrology583, 124296.
Noorbeh, P., Roozbahani, A., & Kardan Moghaddam, H. (2020). Annual and monthly dam inflow prediction using Bayesian networks. Water Resources Management, 34, 2933-2951.
Nourani, V. & M. Komasi (2013). "A geomorphology-based ANFIS model for multi-station modeling of rainfall–runoff process." Journal of Hydrology 490: 41-55.
Nourani, V. (2017). An emotional ANN (EANN) approach to modeling rainfall-runoff process. Journal of Hydrology544, 267-277.
Nourani, V., & Komasi, M. (2013). A geomorphology-based ANFIS model for multi-station modeling of rainfall–runoff process. Journal of Hydrology490, 41-55.
Nourani, V., & Partoviyan, A. (2018). Hybrid denoising-jittering data pre-processing approach to enhance multi-step-ahead rainfall–runoff modeling. Stochastic environmental research and risk assessment32(2), 545-562.
Olah, C. (2015). Understanding LSTM Networks Browning KA, Collier CG (1989) Nowcasting of precipitation systems. Rev Geophys 27:345– 370. https://doi.org/10.1029/RG027i003p00345.
Qi, Y., Zhou, Z., Yang, L., Quan, Y., & Miao, Q. (2019). A decomposition-ensemble learning model based on LSTM neural network for daily reservoir inflow forecasting. Water Resources Management, 33, 4123-4139.
Ross, T. J. (1995). Fuzzy logic with engineering application. McGraw Hill Inc., USA,.
Samadi Borojni, H. & Ostad Ali Askari, Mansour. (2008). Real-time forecasting of daily inflow to the reservoir of Karun Dam 3 by combining the autoregressive method and rainfall forecasts. Iran Water Resources Research, 4(2), 14-22. )In Persian(.
Shahkarami, N., Sanikhani, H., & Moradi, M. (2016). Prediction of inflow to Kamal Saleh dam reservoir using soft calculations. Scientific Journal of Irrigation and Water Engineering of Iran, 6(2), 48-61. )In Persian(.
Sun, F., & Burian, S. J. (2016). Enhancing the accuracy of daily streamflow predictions using machine learning models. Journal of Hydrology, 540, 225-237.
Xiao, Z., Liang, Z., Li, B., Hou, B., Hu, Y., & Wang, J. (2019). New flood early warning and forecasting method based on similarity theory. Journal of Hydrologic Engineering24(8), 04019023.
Yaseen, Z. M., El-Shafie, A., Jaafar, O., Afan, H. A., & Sayl, K. N. (2015). Artificial intelligence based models for stream-flow forecasting: 2000–2015. Journal of Hydrology530, 829-844.
Zhang, X., Wang, H., Peng, A., Wang, W., Li, B., & Huang, X. (2020). Quantifying the uncertainties in data-driven models for reservoir inflow prediction. Water Resources Management, 34(4), 1479-1493.