Combined Operation of Surface and Groundwater Resources in the Conditions of Climate Change

Document Type : Research Paper

Authors

1 Ph.D. Candidate, Department of Water Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

2 Department of Water Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

3 Department of Water Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

Abstract

The main goal of this research is to simulate the interaction of surface water and groundwater by creating a connection between surface water and groundwater models in the Lor plain under climate change conditions. In this regard, the effects of climate change on surface water and groundwater sources were investigated based on the sixth report of the inter-state commission using a WEAP-MODFLOW coupled integrated model. The changes in the water level of the aquifer and the amount of the dropdown in the groundwater level were evaluated under the reference scenario assuming the continuation of the current situation and climate change scenarios, and the number of fluctuations in the entire plain for the 27-year period of 2050-2023(September 2050) in all climate change scenarios based on a model. A hybrid composed of different models was predicted. The results showed that the average dropdown in the groundwater level at the end of the 27-year period of 2023-2050 will be about 11 meters if the current situation (observational scenario) continues. In this scenario, the maximum dropdown in the groundwater level will be 38.7 meters in a part of the central and southwestern areas of the plain. If the climatic parameters predicted by the hybrid model are used in the coupled model of surface water and groundwater, the average dropdown in the groundwater level in the scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP4-8.5 is 9.8 respectively, 10, 10.18 and 10.83 meters. The maximum dropdown in these scenarios will be 34.5, 35.2, 35.5 and 38.2 meters, respectively.

Keywords

Main Subjects