Estimation of air concentration in chute spillway using metamodel methods

Document Type : Research Paper

Authors

1 Professor, Department of Civil Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran

2 Department of Civil Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran

Abstract

One of the ways to prevent creating negative pressure and cavitation in spillways is to introduce air into the flow over the spillways. Understanding the distribution of air concentration variations along the spillway is of significant importance for estimating the aeration level. This study explores the application of GPR and SVM molels in predicting air concentration. To achieve this, a dataset of 2268 laboratory experiments obtained from hydraulic models of chute spillways was utilized in the modeling process. Various input models were defined based on different combinations of measured parameters. The results demonstrate the high capability of both methods in estimating the required air concentration over the spillway. In predicting air concentration in the chute spillway under artificial aeration conditions, flow discharge (QW), longitudinal distance ratio from the end of the deflector to the channel width (L/W), and depth ratio (perpendicular to the spillway) to channel width (Y/W) significantly influenced the outcomes. Statistical indices, including R, DC, and RMSE for this case were 0.9214, 0.8451, and 1.008, respectively, in the GPR, and 0.9333, 0.8662, and 0.937 in the SVM. For scenarios without artificial aeration, the model with input parameters QW, L/W, Y/W, and ΔP (pressure difference between atmospheric pressure and the pressure under the jet) achieved the best performance in the GPR method with values of R=0.9222, DC=0.8644, and RMSE=0.914. In the SVM, the same model with values of 0.87, 0.7543, and 0.123 for R, DC, and RMSE, respectively, was selected as the superior model.

Keywords

Main Subjects