Assessing Temporal-Spatial Variations and Classifying Water Quality of the Dinachal River, Iran, through Field Data Collection

Document Type : Research Paper

Authors

1 Irrigation and Reclamation Engineering Department, Agricultural Faculty, University of Tehran, Karaj, Iran.

2 Professor, Department of Renewable Energies and Sustainable Resources Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, IRAN.

Abstract

Herein we focus on the assessment of water quality of Dinachal River, northern Iran. The evaluation was conducted through field studies, sampling, and laboratory methods. Specifically, we measured and analyzed five hydraulic parameters and thirteen water quality parameters, including nitrate, phosphate, temperature, and acidity. The study encompassed seven selected sections along a 25 km stretch of Dinachal River in September 2021. To analyze the data, we employed various methods such as Schoeller, Piper, and Wilcox, along with the FAO and WQI indices. Spatially comparing the river water quality revealed a consistent increase in most parameters from the upstream section, with a steeper rise observed from the station near SafarMahaleh village (section4) towards the river's end. Notably, three parameters electrical conductivity, nitrate, and total dissolved solids experienced significant increases. Electrical conductivity rose from 315.67 µS/cm to 712 µS/cm, total dissolved solids increased from 202.03 to 455.68 mg/l, and nitrate levels elevated from 11.27 mg/l to 69.47 mg/l along the river. Conversely, nitrate levels rose from 19.4 mg/l to 21.4 mg/l, and electrical conductivity increased from 328 µS/cm to 416µS/cm. When comparing data between 1996and2016, specifically for the months of July and June, we noted that agricultural drains had caused nitrates to exceed the permissible limit. The findings indicate an overall deterioration in certain parameters, particularly in relation to electrical conductivity, nitrate levels, and total dissolved solids. These results emphasize the need for effective measures to mitigate pollution sources and preserve the river's water quality for the well-being of the surrounding communities.

Keywords

Main Subjects