Determining the Water Requirement and Applied Water of Bell Pepper in the Greenhouse and Comparing It with the Results of the Water Requirement System

Document Type : Research Paper


1 *. PhD candidate, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

2 Assistant professor, Department of irrigation and soil physics, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

3 Associated professor of Department of Irrigation and soil physics, Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.


One of the important goals of the development of greenhouses in the country is to improve production efficiency and increase water and fertilizer efficiency. Bell pepper is also one of the most important greenhouse products around the world and has a high economic value. This research was carried out to provide irrigation and fert fertigation scheduling for greenhouse peppers through monitoring soil moisture and salinity in the root zone in 1400 in Alborz province, Chaharbagh city. The treatments include three irrigation treatments I1, I2 and I3 (100, 80 and 60% of the plant's water requirement) and three fertigation treatments F1, F2 and F3 (150, 100 and 50% of the plant's fertilizer requirement, respectively) in the form of a randomized complete block design in three replications. The total amount of irrigation measured for treatments I1, I2 and I3 was 397, 318 and 238 mm, respectively. The irrigation requirement values simulated by the irrigation requirement system of agricultural and garden plants were compared with the measured values, and the statistical indices RMSE, NRMSE, MBE, d and EF were calculated to be 38.55, 0.21, and -21.1, 0.99 and 0.95 respectively. The results showed that the effect of irrigation, fertigation and their mutual effect on the yield of greenhouse pepper was significant. The maximum yield of pepper in the I1F1 treatment was 114.38 tons/ha and the minimum in the I3F1 treatment was 40.96 tons/ha. Also, the maximum water productivity in the I2F2 treatment was 31.05 kg/m3 and the minimum in the I3F1 treatment was 17.19 kg/m3. Although the maximum yield was obtained in the I1F1 treatment, the maximum water productivity was obtained in the I2F2 treatment, and the product yield was not significantly different in these two treatments. The general conclusion shows that 20% deficit irrigation is recommended by monitoring the moisture of the root zone in greenhouse pepper production, but the fertilizer should be controlled by monitoring the salinity of the root zone.


Abdelkhalik, A., Pascual, B., Nájera, I., Domene, M. A., Baixauli, C., & Pascual‑Seva, N. (2020). Effects of deficit irrigation on the yield and irrigation water use efficiency of drip‑irrigated sweet pepper (Capsicum annum L.) under Mediterranean conditions. Irrigation Science, 17.
Albuquerque, F. da S., Silva, Ê. F. de F., de Albuquerque Filho, J. A., & Nunes, M. F. (2011). Crescimento e rendimento de pimentão fertigado sob diferentes lâminas de irrigação e doses de potássio. Revista Brasileira de Engenharia Agrícola e Ambiental, 15, 686–694.
Antony, E., & Singandhupe, R. B. (2004). Impact of drip and surface irrigation on growth, yield and WUE of capsicum (Capsicum annum L.). Agricultural Water Management, 65(2), 121–132.
Borg, H., & Grimes, D. W. (1986). Depth development of roots with time: An empirical description. Transactions of the ASAE, 29(1), 194–0197.
Celebi, M. (2018). The effects of water stress on yield performance of drip-irrigated pepper (Capsicum annum L. cv. Capya var. Yalova yağlık 28) in the Central Anatolian region of Turkey. Arab J Geosci, 8.
da Silva, E. M., Lima, J. G. S., Duarte, S. N., da Silva Barbosa, F., & Maschio, R. (2013). Levels of salinity and fertigation management on the characteristics of the eggplant when grown in a protected environment. Revista Ciência Agronômica, 44(1), 150.
Dalla Costa, L., & Gianquinto, G. (2002). Water stress and water table depth influence yield, water use efficiency, and nitrogen recovery in bell pepper: Lysimeter studies. Australian Journal of Agricultural Research, 53(2), 201–210.
de Almeida, C. D. G. C., Gordin, L. C., dos Santos Almeida, A. C., Júnior, J. A. S., de Almeida, B. G., & Provenzano, G. (2022). Assessing different methodologies for irrigation scheduling in protected environment: A case study of green bell pepper. Irrigation Science, 1–14.
del Amor, F. M., & Gómez-López, M. D. (2009). Agronomical response and water use efficiency of sweet pepper plants grown in different greenhouse substrates. HortScience, 44(3), 810–814.
Delfine, S., Loreto, F., & Alvino, A. (2001). Drought-stress effects on physiology, growth and biomass production of rainfed and irrigated bell pepper plants in the Mediterranean region. Journal of the American Society for Horticultural Science, 126(3), 297–304.
Demirtas, C., & Ayas, S. (2009). Deficit irrigation effects on pepper (Capsicum annuum L. Demre) yield in unheated greenhouse condition. Journal of Food Agriculture & Environment, 7.
Doorenbos, J., & Kassam, A. H. (1979). Yield response to water. Irrigation and Drainage Paper, 33, 257.
Ertek, A. (2014). The application for fertilizer–yield relationships of the ET–yield response factor equation. Turkish Journal Of Agriculture And Forestry, 38, 732–738.
Fallik, E., Alkalai-Tuvia, S., Chalupowicz, D., Zaaroor-Presman, M., Offenbach, R., Cohen, S., & Tripler, E. (2019). How Water Quality and Quantity Affect Pepper Yield and Postharvest Quality. Horticulturae, 5(1), 4.
FAO. (1991). Protected cultivation in the Mediterranean climate. Plant Protection Paper 90, FAO, Rome, Italy.
FAOSTAT, F. (2018). statistical Databases, Fisheries Data, 2001. Food and Agriculture Organization of the United Nations, Rome, Italy.
Fernández, M. D., Gallardo, M., Bonachela, S., Orgaz, F., Thompson, R. B., & Fereres, E. (2005). Water use and production of a greenhouse pepper crop under optimum and limited water supply. The Journal of Horticultural Science and Biotechnology, 80(1), 87–96.
Fontes, P. C. R., Dias, E. N., & Graça, R. N. (2005). Acúmulo de nutrientes e método para estimar doses de nitrogênio e de potássio na fertirrigação do pimentão. SciELO Brasil.
Gençoğlan, C., Akinci, İ. E., Uçan, K., Akinci, S., & Gençoğlan, S. (2006). Response of red hot pepper plant (Capsicum annuum L.) to the deficit irrigation. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 19(1), 131–138.
Grattan, S. R., & Grieve, C. M. (1998). Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78(1–4), 127–157.
Heydari, N. (2007). Water use efficiency in greenhouse production. Iranian National Committee on Irrigation and Drainage, 180.
Ismail, S. M. (2012). Water use efficiency and bird pepper production as affected by deficit irrigation practice. Int. J. Agric. For, 2, 262–267.
Jacovides, C. P., and Kontoyiannis, H. (1995). Statistical procedures for the evaluation of evapotranspiration computing models. Agricultural Water Management, 27, 365–371.
Jaimez, R. E., Vielma, O., Rada, F., & García-Núñez, C. (2000). Effects of water deficit on the dynamics of flowering and fruit production in Capsicum chinense Jacq in a tropical semiarid region of Venezuela. Journal of Agronomy and Crop Science, 185(2), 113–119.
James, L. (1988). Principles of farm irrigation system design. John Willey and Sons Inc., United Kingdom.
Katerji, N., Mastrorilli, M., & Hamdy, A. (1992). Effects of water stress at different growth stages on pepper yield. International Symposium on Irrigation of Horticultural Crops 335, 165–172.
Khan, M. A. I., Farooque, A. M., Haque, M. A., Rahim, M. A., & Hoque, M. A. (2008). Effects of water stress at various growth stages on the physio-morphological characters and yield in chili. Bangladesh Journal of Agricultural Research, 33(3), 353–362.
Koksal, E. S., Tasan, M., Artik, C., & Gowda, P. (2017). Evaluation of financial efficiency of drip-irrigation of red pepper based on evapotranspiration calculated using an iterative soil water-budget approach. Scientia Horticulturae, 226, 398–405.
Leonardo, M., Broetto, F., Villas Boas, R. L., Marchese, J. A., Tonin, F. B., & Regina, M. (2008). Estado nutricional e componentes da produção de plantas de pimentão conduzidas em sistema de fertirrigação durante indução de estresse salino em cultivo protegido. Bragantia, 67, 883–889.
Lodhi, A. S., Kaushal, A., & Singh, K. G. (2014). Impact of irrigation regimes on growth, yield and water use efficiency of sweet pepper. Indian Journal of Science and Technology, 7(6), 790.
Maas, E. V., & Hoffman, G. J. (1977). Crop salt tolerance—Current assessment. Journal of the Irrigation and Drainage Division, 103(2), 115–134.
Mane, A. V., Deshpande, T. V., Wagh, V. B., Karadge, B., & Samant, J. S. (2011). A critical review on physiological changes associated with reference to salinity. International Journal of Environmental Sciences, 1(6), 1192.
Marcussi, F. F. N., de Godoy, L. J. G., & Bôas, R. L. V. (2004). Fertirrigação nitrogenada e potássica na cultura do pimentão baseada no acúmulo de nek pela planta. Irriga, 9(1), 41–51.
Medeiros, P. R., & Duarte, S. N. (2012). Eficiência do uso de água e de fertilizantes no manejo de fertirrigação no cultivo do tomateiro sob condições de salinidade do solo. Revista Brasileira de Ciências Agrárias, 7(2), 344–351.
Nagaz, K., Masmoudi, M. M., & Mechlia, N. B. (2012). Effects of deficit drip-irrigation scheduling regimes with saline water on pepper yield, water productivity and soil salinity under arid conditions of Tunisia. Journal of Agriculture and Environment for International Development (JAEID), 106(2), 85–103.
Nash, J. E. & Sutcliffe, J. V. (1970).River flow forecasting through conceptual models’ part I—A discussion of principles. Journal of Hydrology, 10, 282–290.
Nunes Júnior, E. S., Medeiros, J. F. de, Oliveira, F. de A. de, Lima, L. A., Bezerra, F. M. S., & Alves, R. de C. (2017). Nitrogen and potassium fertigation in bell pepper cultivated in greenhouse using fertigation managements. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(3), 186–190.
Oliveira, F. A., Duarte, S. N., Medeiros, J. F., Dias, N. S., Oliveira, M. K., Silva, R. C., & Lima, K. S. (2015). Mineral nutrition of sweet pepper under different fertigation management. Horticultura Brasileira, 33, 216–223.
Oliveira, F. de A. de, Duarte, S. N., Medeiros, J. F. de, Dias, N. da S., da Silva, R. C., & Lima, C. J. de S. (2013). Manejos da fertirrigação e doses de N e K no cultivo de pimentão em ambiente protegido. Revista Brasileira de Engenharia Agrícola e Ambiental, 17, 1152–1159.
Owusu-Sekyere, J. D., Asante, P., & Osei-Bonsu, P. (2010). Water requirement, deficit irrigation and crop coefficient of hot pepper (Capsicum frutescens) using irrigation interval of four (4) days. Journal of Agricultural and Biological Science, 5(5), 72–78.
Papadopoulos, A. P. (1993). Seasonal fertigation schedules for greenhouse tomatoes-concepts and delivery systems. International Symposium on Water Quality & Quantity-Greenhouse 458, 123–140.
Patil, V. C., Al-Gaadi, K. A., Wahb-Allah, M. A., Saleh, A. M., Marey, S. A., Samdani, M. S., & Abbas, M. E. (2014). Use of saline water for greenhouse bell pepper (capsicum annuum) production. American Journal of Agricultural and Biological Sciences, 10.
Rubio, J. S., García-Sánchez, F., Flores, P., Navarro, J. M., & Martínez, V. (2010). Yield and fruit quality of sweet pepper in response to fertilisation with Ca2+ and K+. Spanish Journal of Agricultural Research, 8(1), 170–177.
Sajadi, F., Sharifan, H., & Jamali, S. (2017). Evaluation the use of Caspian Seawater for Irrigation Green pepper under Greenhouse Conditions. Iranian Journal of Irrigation & Drainage, 11(2), 274–285.
Salarian, M., Alizadeh, A., Davari, K., & Ansari, H. (2014). The effect of deficit irrigation and water salinity on the root and performance of bell pepper in a smart drip irrigation system. National Conference of Water, Man and Earth.
Santos, H. C. A., Lima junior, J. A. D., Silva, A. L. P. D., Castro, G. L. S. D., & Gomes, R. F. (2020). Yield of fertigated bell pepper under different soil water tensions and nitrogen fertilization. Revista Caatinga, 33, 172–183.
Sezen, S. M., Tekİn, S., & Șengül, H. (2016). Effects of various irrigation levels applied with drip method on processing pepper yield and economical analysis. Kahramanmaraș Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 19(3), 310–318.
Sezen, S. M., Yazar, A., Şengül, H., Baytorun, N., Daşgan, Y., Akyildiz, A., Tekin, S., Onder, D., Ağçam, E., & Akhoundnejad, Y. (2015). Comparison of drip-and furrow-irrigated red pepper yield, yield components, quality and net profit generation. Irrigation and Drainage, 64(4), 546–556.
Shayesteh, N., Golchin, A., & Shafiei, S. (2012). The Effects of Irrigation Water Salinity, Nitrogen and Foliar Application of Calcium Chloride on Yield and Growth Indices of Pepper. Journal of Agricultural Engineering Soil Science and Agricultural Mechanization, (Scientific Journal of Agriculture), 34(2), 69–84.
Sonneveld, C. (1990). Estimating quantities of water-soluble nutrients in soils using a specific 1: 2 by volume extract. Communications in Soil Science and Plant Analysis, 21(13–16), 1257–1265.
Sonneveld, C., & Voogt, W. (2009). Plant nutrition in future greenhouse production. In Plant nutrition of greenhouse crops (pp. 393–403). Springer.
Tabatabayi, H., Mardani nejad, S., & Zare abyaneh, H. (2014). Effects of Water Stress on Growth Indices, Yield, and Water Use Efficiency of Pepper Plant in Greenhouse Condition. Journal of Water Research in Agriculture, 28(1), 63–71.
Wang, H., Xiang, Y., Zhang, F., Tang, Z., Guo, J., Zhang, X., Hou, X., Wang, H., Cheng, M., & Li, Z. (2022). Responses of yield, quality and water-nitrogen use efficiency of greenhouse sweet pepper to different drip fertigation regimes in Northwest China. Agricultural Water Management, 260, 107279.
Willmott, C. J. (1982). Some Comments on the Evaluation of Model Performance. Bulletin American Meteorological Society, 63, 1309–1313.