Feasibility study of struvite production from Saravan landfill leachate

Document Type : Research Paper


1 Soil Science Department,, Faculty of Agricultural Science, University of Guilan, Rasht, Iran

2 Soil Science Department,, Faculty of agriculture, Tehran University, Karaj, Iran

3 Soil Science Department, Faculty of agriculture, Tehran University, Karaj, Iran


High concentrations of ammonium and phosphate in leachate allow producing the struvite mineral (MgNH4PO4·6H2O), which is a valuable slow-release fertilizer in agriculture. In this study, the possibility of struvite precipitation from the Saravan landfill leachate was considered. The research was conducted in the Soil Sciences Department of the University of Guilan in 1400. Leachate was sampled and the concentration of ammonium, phosphate and magnesium ions in the leachate was measured. Struvite precipitation was evaluated in three molar ratios 1:1:1, 1:1.2:1.2, and 2.5:2:1 of [NH4+]:[Mg2+]:[PO43−] and at two different pHs; 9 And 9.5. Since, the amount of ammonium in the leachate was much higher than magnesium and phosphate, the tested molar ratios were established based on the ammonium concentration and the magnesium and phosphate concentrations were adjusted by magnesium chloride (MgCl2.6H2O) and phosphoric acid (H3PO4), respectively. XRD and FTIR analysis were used to assess the precipitated struvite mineralogy. The position and intensity of the peaks in the precipitate formed in all treatments were in good agreement with the standard struvite peak, which confirmed the precipitation of this mineral. FT-IR analysis showed the spectrum of struvite mineral in all tested molar ratios. Comparison of the formed precipitate showed that at pH= 9.5 the amount of struvite formed in molar ratios of 1:1:1, and 1:1.2:1.2 of [NH4+]:[Mg2+]:[PO43−] was more than that at pH=9. Removal of ammonium from the leachate at pH=9.5 and in molar ratios of 2.5:2:1, 1:1.2:1.2, and 1: 1: 1 was 45.5, 39.7 and 32.7%, respectively. Therefore, the use of resources such as landfill leachate in the struvite production, while removing ammonium, can reduce the production cost of this fertilizer.


Baird, R.B. (2017). Standard methods for the examination of water and wastewater, 23rd. Water Environment Federation, American Public Health Association, American Water Works Association.
Barbosa, S.G., Peixoto, L., Meulman, B., Alves, M.M. and Pereira, M.A. (2016). A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources. Chemical Engineering Journal, 298, 146-153.
Buchanan, J.R., Mote, C.R. and Robinson, R.B. (1994). Thermodynamics of struvite formation. Transactions of the ASAE, 37, 617–621.
Butt, T.E., Alam, A., Gouda, H.M., Paul, P. and Mair, N. (2017). Baseline study and risk analysis of landfill leachate current state-of-the-science of computer aided approaches. Science of the Total Environment, 580, 130135.
Çelen, I. and Türker, M. (2001). Recovery of ammonia as struvite from anaerobic digester effluents. Environmental Technology, 22(11), 1263-1272.
Chauhan, C.K. and Joshi, M.J. (2014). Growth and characterization of struvite-Na crystals. Journal of Crystal Growth, 401, 221–226.
Di Iaconi, C., Pagano, M., Ramadori, R. and Lopez, A. (2010). Nitrogen recovery from a stabilized municipal landfill leachate. Bioresource Technology, 101, 1732–1736.
Farmer, V.C. (1974). Infrared Spectra of Minerals, Monograph No. 4, Mineral, Soc. Publishers, United Kingdom, London.
Frost, R. L., Weier, M. L. and Erickson, K. L. (2004). Thermal decomposition of struvite. Journal of Thermal Analysis and Calorimetry, 76, 1025–1033.
Gong, W., Li, Y., Luo, L., Luo, X., Cheng, X. and Liang, H. (2018). Application of struvite-MAP crystallization reactor for treating cattle manure anaerobic digested slurry: Nitrogen and phosphorus recovery and crystal fertilizer efficiency in plant trials. International Journal of Environmental Research and Public Health, 15, 1397.
Hao, X., Wang, C., Van Loosdrecht, M.C.M. and Hu, Y. (2013). Looking beyond struvite for Precovery. Environmental Science & Technology, 47, 4965–4966.
Huang, H., Liu, J., Wang, S., Jiang, Y., Xiao, D., Ding, L. and Gao, F. (2016). Nutrients removal from swine wastewater by struvite precipitation recycling technology with the use of Mg3(PO4)2 as active component. Ecological Engineering, 92, 111–118.
Huang, H., Xiao, D., Zhang, Q. and Ding, L. (2014). Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources. Journal of Environmental Management, 145, 191-198.
Huang, H., Zhang, D., Wang, W., Li, B., Zhao, N., Li, J. and Dai, J. (2019). Alleviating Na+ effect on phosphate and potassium recovery from synthetic urine by K-struvite crystallization using different magnesium sources. Science of the Total Environment, 655, 211–219.
Kaza, S., Yao, L., Bhada-Tata, P. and Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. World Bank Publications, Washington, DC.
Khalil, S.K.H. and Azooz, M.A. (2007). Application of vibrational spectroscopy in the identification of the composition of the urinary stones. Journal of Applied Sciences Research, 3, 387–391.
Kim, D., Min, K.J., Lee, K., Yu, M.S. and Park, K.Y. (2017). Effects of pH, molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater. Environmental Engineering Research, 22, 12–18.
Kurtulus, G., and Tas, A.C. (2011). Transformations of neat and heated struvite (MgNH4PO4.6H2O). Materials Letters, 65, 2883-2886.
Law, K.P. and Pagilla, K.R. (2019). Reclaimed phosphorus commodity reserve from water resource recovery facilities-A strategic regional concept towards phosphorus recovery. Resources, Conservation and Recycling, 150, 104429.
Le Corre, K.S., Valsami-Jones, E., Hobbs, P. and Parsons, S.A. (2005). Impact of calcium on struvite crystal size, shape and purity. Journal of Crystal Growth, 283, 514-522.
Li, B., Huang, H.M., Boiarkina, I., Yu, W., Huang, Y.F., Wang, G.Q. and Young, B.R. (2019). Phosphorus recovery through struvite crystallisation: Recent developments in the understanding of operational factors. Journal of Environmental Management, 248, 109254.
Li, B., Boiarkina, I., Huang, H.M., Munir, T., Wang, G.Q. and Young, B.R. (2019). Phosphorus recovery through struvite crystallization: Challanges for future design. Science of the Total Environment, 648, 1244–1256.
Li, X.Z. and Zhao, Q.L. (2003). Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer. Ecological Engineering, 20, 171–181.
Luo, Z., Wang, D., Yang, J., Huang, H. and Su, G. (2019). Nitrogen removal from digested piggery wastewater using fermented superphosphate within the pretreatment stage and an MAP fertilizer pot test. Journal of Cleaner Production, 152, 88–102.
Martí, N., Pastor, L., Bouzas, A., Ferrer, J. and Seco, A. (2010). Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation. Water Research, 44, 2371–2379.
Miller, F.A. and Wilkins, C.H. (1952). Infrared spectra and characteristic frequencies of inorganic ions. Analytical Chemistry, 24, 1253–1294.
Muys, M., Phukan, R., Brader, G., Samad, A., Moretti, M., Haiden, B., Pluchon, S., Roest, K., Vlaeminck, S.E. and Spiller, M. (2021). A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability. Science of the Total Environment, 756, 143726.
Nakamoto, K. (1978). Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed., John Wiley & Sons, New York.
Peng, L., Dai, H., Wu, Y., Peng, Y. and Lu, X. (2018). A comprensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere, 197, 768–781.
Ramaswami, S. Behrendt, J. Wang, G., Eggers, S. and Otterpohl, R. (2016). Combining magnesium ammonium phosphate precipitation with membrane processes for ammonia removal from methanogenic leachate. Water Environment Journal, 30, 218–226.
Rodlia, A., Ikhlas, N., Pandebesie, E.S., Bagastyo, A.Y. and Herumurti, W. (2020). The effect of mixing rate on struvite recovery from the fertilizer industry. In IOP Conference Series: Earth and Environmental Science, 506, 012013. IOP Publishing.
Ryu, H.D., Lim, D.Y., Kim, S.J., Baek, U.I., Chung, E.G., Kim, K. and Lee, J.K. (2020). Struvite precipitation for sustainable recovery of nitrogen and phosphorus from anaerobic digestion effluents of swine manure. Sustainability, 12(20), 8574.
Saadat, E., Ghorbanzadeh, N., Farhangi, M.B. and Fazeli Sangani, M. (2022). Potential application of Chlorella sp. biomass cultivated in landfill leachate as agricultural fertilizer. Archives of Agronomy and Soil Science, 69, 890-906.
Shu, L., Schneider, P., Jegatheesan, V. and Johnson, J. (2006). An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresource Technology, 97(17), 2211-2216.
Siciliano, A. (2016). Assessment of fertilizer potential of the struvite produced from the treatment of methanogenic landfill leachate using low-cost reagents. Environmental Science and Pollution Research, 23(6), 5949-5959.
Siciliano, A., Limonti, C., Curcio, G.M. and Molinari, R. (2020). Advances in struvite precipitation technologies for nutrients removal and recovery from aqueous waste and wastewater. Sustainability, 12(18), 7538.
Siciliano, A., Ruggiero, C. and De Rosa, S. (2013). A new integrated treatment for the reduction of organic and nitrogen loads in methanogenic landfill leachates. Process Safety and Environmental Protection, 91, 311–320.
Stefov, V., Soptrajanov, B., Kuzmanovski, I., Lutz, H.D. and Engelen, B. (2005). Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues III. Spectra of protiated and partially deuterated magnesium ammonium phosphate hexahydrate. Journal of Molecular Structure, 752, 60-67.
Tao, W., Fattah, K.P. and Huchzermeier, M.P. (2016). Struvite recovery from anaerobically digested dairy manure: A review of application potenzial and hindrances. Journal of Environmental Management, 169, 46–57.
Tonetti, A.L., de Camargo, C.C. and Guimarães, J.R. (2016). Ammonia removal from landfill leachate by struvite formation: an alarming concentration of phosphorus in the treated effluent. Water Science and Technology, 74(12), 2970-2977.
Uysal, A., Yilmazel, Y.D. and Demirer, G.N. (2010). The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. Journal of Hazardous Materials, 181, 248–254.
Wang, K., Li, L., Tan, F. and Wu, D. (2018). Treatment of landfill leachate using activated sludge technology: A Review. Hindawi Archaea, 10 page.
Wijekoon, P., Koliyabandara, P.A., Cooray, A.T., Lam, S.S., Athapattu, B.C. and Vithanage, M. (2022). Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges. Journal of Hazardous Materials, 421, 126627.
Wu, H., Ma, W., Kong, Q. and Liu, H. (2018). Spatial-temporal dynamics of organics and nitrogen removal in surface flow constructed wetlands for secondary effluent treatment under cold temperature. Chemical Engineering Journal, 350, 445–452.
Wu, S., Zou, S., Liang, G., Qian, G. and He, Z. (2018). Enhancing recovery of magnesium as struvite from landfill leachate by pretreatment of calcium with simultaneous reduction of liquid volume via forward osmosis. Science of the Total Environment, 610, 137-146.
Yilmazel, Y.D. and Demirer, G.N. (2011). Removal and recovery of nutrients as struvite from anaerobic digestion residues of poultry manure. Environmental Technology, 32, 783-794.
Zhang, T., Ding, L. and Ren, H. (2009). Pretreatment of ammonium removal from landfill leachate by chemical precipitation. Journal of Hazardous Materials, 166, 911–915.
Zhang, T., Jiang, R. and Deng, Y. (2017). Phosphous recovery by struvite crystallization from livestock wastewater and reuse as fertilizer: A review. Physico-Chemical Wastewater Treatment and Resource Recovery, 135–152.
Zheng, F., Huang, C.H. and Norton, L.D. (2004). Effects of near-surface hydraulic gradients on nitrate and phosphorus losses in surface runoff. Journal of Environmental Quality, 33(6), 2174–2182.