Effect of Zinc application on Arsenic Dynamics in Contaminated Soil and Agronomic traits of Three Rice (Oryza sativa L.) Cultivars

Document Type : Research Paper


1 PhD student in Agriculture,Department of Agriculture and Plant Breeding,Faculty of Agriculture and Natural ResourcesMohaghegh Ardabili University, Ardabil, Iran

2 Department of Agriculture and Plant Breeding,Faculty of Agriculture and Natural ResourcesMohaghegh Ardabili University, Ardabil, Iran

3 Professor,Department of Agriculture and Plant Breeding, Faculty of Agriculture,University of Guilan, Rasht, Iran

4 Academic member of rice research institute of Iran


Arsenic as aheavy metal, is one of the most important pollutant in the environment that has a detrimental effect on the morphological, physiological and biochemical properties of rice. Zinc application is one of the way to reduce negative effects of arsenic. For this purpose, an outdoor experiment was performed in the form of three-factor factorial experiment based on complete randomized design with three replications at the Rice Research Institute of Iran (Rasht) during growing season in 2019. The proposed factors were zinc at three levels (0, 10 and 20 mgkg-1) as zinc sulfate, arsenic at three levels (0, 1 and 2 mg kg-1) as Arsenic oxide, and three  rice cultivars (Hashemi, Gilaneh, Ghodsi). The results indicated that all factors had significant effect on the amount of zinc uptake in the soil, straw and grain, amount of arsenic in the soil, straw and grain, plant height, total and fertile tiller number, panicle length, 1000-seed weight, biomass and grain yield.   The uppermost increase in plant height, total tiller number, fertile tillers, panicle length, 1000-seed weight and grain yield were recorded 1.5, 68.4, 85.05, 31.5, 6.6 and 58.5 percent, respectively due to soil application of 20 mg zinc per kg-1. In terms of zinc uptake by straw and grain, Hashemi cultivar> Ghodsi cultivar> Gilaneh cultivar  showed the highest zinc content, respectively, which Hashemi and Ghodsi cultivars are more efficient in terms of zinc uptake and are more tolerant to arsenic. The highest amount of arsenic in straw and grain was observed in Gilaneh> Ghodsi> Hashemi cultivars, respectively. Therefore, due to the interaction of zinc with arsenic, the use of zinc and cultivars with high zinc uptake capacity might be a good way to reduce arsenic toxicity in rice plants.


Alloway, B. J. (2008). Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health, 31(5), 537-548.
Brady, N. C., & Weil, R. R. (2004). Elements of the Nature and Properties of Soils Prentice-Hall. Inc. Englewood Cliffs, New Jersey, USA.‏
Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New Phytologist, 173(4), 677-702.‏
Cakmak, I. (2008). Enrichment of cereal grains with zinc: agronomic or genetic biofortification?.Plant and Soil, 302(1), 1-17.‏
Chakeralhossein, M. R., Mohtashami, R., & Owliaie, H. R. (2009). Effects of rate, source, and method of zinc fertilizer application on quantitative and qualitative characteristics of rice (cv: Choram 1). Journal of Research in Agricultural Science, 5(1). 33-43. (In Farsi).‏
Craw, D., & Chappell, D. A. (2000). Metal redistribution in historic mine wastes, Coromandel Peninsula, New Zealand. New Zealand Journal of Geology and Geophysics, 43(2), 187-198.
Das, D. K., Garai, T. K., Sarkar, S., & Sur, P. (2005). Interaction of arsenic with zinc and organics in a rice (oryza sativa L.)–cultivated field in India. TheScientificWorldJournal, 5, 646-651.‏
Das, D. K., Sur, P., & Das, K. (2008). Mobilization of arsenic in soils and in rice (Oryza sativa L.) plants affected by organic matter and zinc application in irrigation water contaminated with arsenic. Plant Soil and Environment, 54(1), 30.‏
Degryse, F., Smolders, E., & Parker, D. R. (2006). Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions. Plant and Soil, 289(1), 171-185.‏
Dittmar, J., Voegelin, A., Roberts, L. C., Hug, S. J., Saha, G. C., Ali, M. A., ... & Kretzschmar, R. (2010). Arsenic accumulation in a paddy field in Bangladesh: seasonal dynamics and trends over a three-year monitoring period. Environmental science & technology, 44(8), 2925-2931.
Faizan, M., Sehar, S., Rajput, V. D., Faraz, A., Afzal, S., Minkina, T., ...& Faisal, M. (2021). Modulation of cellular redox status and antioxidant defense system after synergistic application of Zinc oxide nanoparticles and salicylic acid in rice (Oryza sativa) plant under arsenic stress. Plants, 10(11), 2254.‏
FAO. (2018). Rice market monitor. Vol. XVI, Trade and Markets Division. Rome.
Gao, X., Hoffland, E., Stomph, T., Grant, C. A., Zou, C., & Zhang, F. (2011). Improving zinc bioavailability in transition from flooded to aerobic rice. A review. Agronomy for Sustainable Development, 32(2), 465-478.
Garai, T. K., Das, D. K., & Sarkar, S. (2000). Effect of iron and zinc application on the availability of native and applied arsenic simulating low land rice condition. In International Conference on Managing Natural Resources for Sustainable Agricultural Production in the 21st Century, New Delhi, February (pp. 14-18).‏
Guo, J., Dai, X., Xu, W., & Ma, M. (2008). Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere, 72(7), 1020-1026.
Huang, G., Changfeng, D. I. N. G., Yibing, M. A., Yurong, W. A. N. G., Zhigao, Z. H. O. U., & Xingxiang, W. A. N. G. (2021). Rice (Oryza sativa L.) seedlings enriched with zinc or manganese: Their impacts on cadmium accumulation and expression of related genes. Pedosphere, 31(6), 849-858.‏
Huq, S. I., & Naidu, R. (2003). Arsenic in groundwater of Bangladesh: Contamination in the food chain. Arsenic contamination: Bangladesh perspective, 203-226.
Hussain, M. M., Bibi, I., Niazi, N. K., Nawaz, M. F., & Rinklebe, J. (2021). Impact of organic and inorganic amendments on arsenic accumulation by rice genotypes under paddy soil conditions: A pilot-scale investigation to assess health risk. Journal of Hazardous Materials, 420, 126620.‏
Jiang, W., Struik, P. C., Lingna, J., Van Keulen, H., Ming, Z., & Stomph, T. J. (2007). Uptake and distribution of root‐applied or foliar‐applied 65Zn after flowering in aerobic rice. Annals of Applied Biology, 150(3), 383-391.‏
Khan, P., Memon, M.Y., Imtiaz, M., Depar, N., Aslam, M., Memon, M.S. and Shah, J.A. (2012). Determining the zinc requirements of rice genotype Sarshar evolved at NIA, Tandojam. Sarhad Journal of Agriculture, 28(1), pp.1-7.
Khan, Z., Thounaojam, T. C., & Upadhyaya, H. (2022). Arsenic stress in Rice (Oryza sativa) and its amelioration approaches. Plant Stress, 100076.‏
Kim, T., Mills, H. A., & Wetzstein, H. Y. (2002). Studies on the effect of zinc supply on growth and nutrient uptake in pecan. Journal of Plant Nutrition, 25(9), 1987-2000.‏
Kumar, R., Kumar, M., Yadav, S., & Kumar, R. (2020). Effect of Sources and Methods of Zinc Application on Productivity, Nutrient Uptake and Zinc Use Efficiency of Basmati rice (Oryza sativa L.). Int. J. Curr. Microbiol. App. Sci, 9(1), 2231-2242.‏
Li, R. Y., Ago, Y., Liu, W. J., Mitani, N., Feldmann, J., McGrath, S. P., ... & Zhao, F. J. (2009). The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiology, 150(4), 2071-2080.‏
Ma, X., Sharifan, H., Dou, F., & Sun, W. (2020). Simultaneous reduction of arsenic (As) and cadmium (Cd) accumulation in rice by zinc oxide nanoparticles. Chemical Engineering Journal, 384, 123802.‏
Mahmoudsoltani, S. (2018). Zinc deficiency, causes, symptoms and solutions. Technical Bulletin. Rice research institute of Iran: 31p.
Mahmoudsoltani, S. M., Hanafi, M. M., Samsuri, A. W., Muhammed, S. K. S., & Hakim, M. A. (2016). Rice growth improvement and grains bio-fortification through lime and zinc application in zinc deficit tropical acid sulphate soils. Chemical Speciation & Bioavailability, 28(1-4), 152-162.‏
Mahmoudsoltani, S., & Allagholipoor, M. (2021). Screening Rice Varities for Higher Zn Efficiency in Paddy Field. Iranian Journal of Soil and Water Research, 52(7), 1881-1901.
Mahmoudsoltani, S., Mohamed, M. H., Abdul, W. S. and Sharifah, K. (2017). Lime and Zn interactions effects on yield, yield component, and quality of rice in Zn deficit tropical paddy soil. Azarian Journal of Agriculture, 4(5), 185-192.
Majumder, B., Das, S., Pal, B., & Biswas, A. K. (2022). Influence of arsenate imposition on modulation of antioxidative defense network and its implication on thiol metabolism in some contrasting rice (Oryza sativa L.) cultivars. BioMetals, 1-28.‏
Mawia, A. M., Hui, S., Zhou, L., Li, H., Tabassum, J., Lai, C., ...& Hu, P. (2021). Inorganic arsenic toxicity and alleviation strategies in rice. Journal of Hazardous Materials, 408, 124751.
Moulick, D., Samanta, S., Sarkar, S., Mukherjee, A., Pattnaik, B. K., Saha, S., ...& Santra, S. C. (2021). Arsenic contamination, impact and mitigation strategies in rice agro-environment: An inclusive insight. Science of The Total Environment, 800, 149477.‏
Mousavi, S. R., Galavi, M., & Rezaei, M. (2012). The interaction of zinc with other elements in plants: a review. International Journal of Agriculture and Crop Sciences, 4(24), 1881-1884.
Murphy, T., Irvine, K., Phan, K., Lean, D., & Wilson, K. (2019). Environmental and health implications of the correlation between arsenic and zinc levels in rice from an arsenic-rich zone in Cambodia. Journal of Health and Pollution, 9(22).‏
National Research Council (2001) Arsenic in drinking water – 2001 update. National Academy Press, Washington, D.C., 2001
Niazi, N. K., Hussain, M. M., Bibi, I., Shahid, M., Ali, F., Iqbal, J., ...& Rinklebe, J. (2022). The significance of eighteen rice genotypes on arsenic accumulation, physiological response and potential health risk. Science of The Total Environment, 832, 155004.‏
Panaullah, G. M., Alam, T., Hossain, M. B., Loeppert, R. H., Lauren, J. G., Meisner, C. A., ... & Duxbury, J. M. (2009). Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant and Soil, 317(1), 31-39.
Rahman, K. M., Chowdhury, M. A. K., Sharmeen, F., Sarkar, A., Hye, M. A., & Biswas, G. C. (2011). Effect of zinc and phosphorus on yield of Oryza sativa (cv. br-11). Bangladesh Res. Pub. J, 5(4), 315-358.‏
Rahman, M. M., Sengupta, M. K., Chowdhury, U. K., Lodh, D., Das, B., Ahamed, S., ...& Chakraborti, D. (2006). Arsenic Contamination Incidents Around the World (Doctoral dissertation, Csiro Publishing).
Rehman, H. U., Aziz, T., Farooq, M., Wakeel, A., & Rengel, Z. (2012). Zinc nutrition in rice production systems: a review. Plant and Soil, 361(1), 203-226.‏
Sanchary, I. J., & Huq, S. M. I. (2017). Remediation of arsenic toxicity in the soil-plant system by using zinc fertilizers. Journal of Agricultural Chemistry and Environment, 6(01), 30.
Shivay, Y. S., Prasad, R., Singh, R. K., & Pal, M. (2015). Relative efficiency of zinc-coated urea and soil and foliar application of zinc sulphate on yield, nitrogen, phosphorus, potassium, zinc and iron biofortification in grains and uptake by basmati rice (Oryza sativa L.). Journal of Agricultural Science, 7(2), 161.‏
Shivay, Y.S., Kumar, D. and Prasad, R., 2008. Effect of zinc-enriched urea on productivity, zinc uptake and efficiency of an aromatic rice–wheat cropping system. Nutrient Cycling in Agroecosystems, 81(3), pp.229-243.
Srivastava, A. K., Pandey, M., Ghate, T., Kumar, V., Upadhyay, M. K., Majumdar, A., ...& Suprasanna, P. (2021). Chemical intervention for enhancing growth and reducing grain arsenic accumulation in rice. Environmental Pollution, 276, 116719.‏
Stroud, J. L., Norton, G. J., Islam, M. R., Dasgupta, T., White, R. P., Price, A. H., ...& Zhao, F. J. (2011). The dynamics of arsenic in four paddy fields in the Bengal delta. Environmental Pollution, 159(4), 947-953.
Su, Y. H., McGrath, S. P., & Zhao, F. J. (2010). Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant and Soil, 328(1), 27-34.‏
Teale, W.D., Paponov, I.A. and Palme, K. (2007). Auxin in action: signalling, transport and the control of plant growth and development. Nature reviews Molecular cell biology, 7(11), pp.847-859.
Williams, P. N., Price, A. H., Raab, A., Hossain, S. A., Feldmann, J., & Meharg, A. A. (2005). Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environmental Science &Technology, 39(15), 5531-5540.‏
Williams, P. N., Raab, A., Feldmann, J., & Meharg, A. A. (2007). Market basket survey shows elevated levels of As in South Central US processed rice compared to California: consequences for human dietary exposure. Environmental Science &Technology, 41(7), 2178-2183.
World Health Organization (2004) IARC, Working Group on some drinking water disinfectants and contaminants, including arsenic, vol 84. Lyon.
Wu, F., Fang, Q., Yan, S., Pan, L., Tang, X., & Ye, W. (2020). Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): germination, early growth, and arsenic uptake. Environmental Science and Pollution Research, 27(21), 26974-26981.‏
Xu, X. Y., McGrath, S. P., Meharg, A. A., & Zhao, F. J. (2008). Growing rice aerobically markedly decreases arsenic accumulation. Environmental Science &Technology, 42(15), 5574-5579.
Yan, S., Wu, F., Zhou, S., Yang, J., Tang, X., & Ye, W. (2021). Zinc oxide nanoparticles alleviate the arsenic toxicity and decrease the accumulation of arsenic in rice (Oryza sativa L.). BMC plant biology, 21(1), 1-11.
Yoshida, S. and Benta, W.H. (1983). Potential productivity of field crops under different environments. IRRI, Los Banos, Philippines.
Yousefi, M., & Zandi, P. (2012). Effect of foliar application of zinc and manganese on yield of pumpkin (Cucurbita pepo L.) under two irrigation patterns. Electronic Journal of Polish Agricultural Universities. Series Agronomy, 15(4), 1-9.‏
Zhao, F. J., Ma, J. F., Meharg, A. A., & McGrath, S. P. (2009). Arsenic uptake and metabolism in plants. New Phytologist, 181(4), 777-794.
Zhao, F. J., Stroud, J. L., Khan, M., & McGrath, S. P. (2012). Arsenic translocation in rice investigated using radioactive 73As tracer. Plant and Soil, 350(1), 413-420.‏