Evaluation of Soil Surface Stabilization Affected by Organic and Mineral Mulches Using Erosional Plots and Profile Meter

Document Type : Research Paper


1 Dep of soil science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz

2 Assistant Professor of Soil Science Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

3 chemistry department- science faculty- Shahid Chamran University of Ahvaz- Ahvaz-Iran


Wind erosion is one of the most dominant soil degradation factors in semi-arid and arid regions. Mulching is a management scenario to protect the soil surface. The present research accomplished to assess the efficacy of some organic and inorganic mulch on soil physical and hydraulic properties in the Kupal region of Khuzestan province. These mulches consist of organic mulch (O) at three levels O1, O2 and O3 at combined ratios of sugarcane bagasse, gelatin and gum arabic, mineral mulch (M) at two levels M1 and M2 from MNF mulch and Nanosilica hydrogel (H) mulch was made of nanosilica hydrogel at two levels H1 and H2, which were applied to the erosional plots with the size of 50 × 30 cm in May 2020, profile meters installed in each plot. After four months, applying the mulches had significant effects to improve the physical and hydraulic properties of the soil. The O3 and O2 treatments demonstrated the highest effect on soil MWD, by the value of 2.49 mm, and 2.45 mm, respectively. Soil organic carbon (SOC) increased from 0.2% in the control treatment to 0.92% in the O3 treatment. The H1 treatment depicted the lowest effect on SOC by the value of 0.50%. The biggest amount of soil water content in all moisture points was related to the O3 treatment. The lowest amount of soil loss was observed in O3 treatment (1490 ton / km.year) and the highest value was related to the control treatment (6028 ton / km.year). The organic matter in the mulches due to its binding effect was able to improve aggregation process. To conclude the binding and armoring effect are the main effects of organic mulch. Organic matter in mulches, due to its binding effect, is able to improve and increase the agglomeration process and reduce soil losses.


Ahmed, S. E., Mohamed, B. E. and Karamalla, K. A. (2009). Analytical studies on the gum exudates from Anogeissus leiocarpus. Pakistan journal of Nutrition, 8(6), 782-786. http://citeseerx.ist.psu.edu/viewdoc/download?doi=
Aldaood, A., Bouasker, M. and Al-Mukhtar, M. (2014(. Soil-water characteristic curve of lime treated gypseous soil. Appl Clay Sci, 102: 128–138.
Aliabad, F.A., Shojaei, S., Zare, M .and Ekhtesasi, M.R. (2019(. Assessment of the fuzzyARTMAP neural network method performance in geological mapping using satellite images and Boolean logic. Int. J. Environ. Sci. Technol, 16 (7), 3829–3838.
Alipur, H., Zare, M. and Shojaei, S. (2016(. Assessing the degradation of vegetation of arid zones using FAO–UNIP model (case study: Kashan zone). Model. Earth Syst. Environ, 2 (4), 1–6.
Almaroai, Y. A., Usman, A. R. A., Ahmad, M., Moon, D. H., Cho, J. S., Joo, Y. K., Jeon, C., Lee, S. S. and Ok, Y. S. (2013). Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environ Earth Sci, 71, 1289–1296.
Al-Mukhtar, M., Lasledj, A. and Alcover, J. F. (2010). Behaviour and mineralogy changes in lime-treated expansive soil at 20 0C. Appl Clay Sci, 50, 191–198.
Apostol, K. G., Jacobs, D. F. and Dumroese, R. K. (2009). Root desiccation and drought stress responses of bareroot Quercus rubra seedlings treated with a hydrophilic polymer root dip. Plant and Soil, 315(1-2), 229–240 doi:10.1007/s11104-008-9746-6
Azzaoui, K., Hammouti, B., Lamhamdi, A., Mejdoubi, E. and Berrabah, M. (2015). The Gum Arabic in the southern region of Morocco. Moroccan Journal of Chemistry, 3. 99- 107.
Badreldin, A., Ziada, A. and Blunden, G. (2009). Biological effects of gum arabic: A review of some recent research. Food and Chemical Toxicology, 47, 1–8.
Bahadoran, N., Behzad, T. and Etesami, N. (2017). Synthesis and study of inflationary behavior of hydrogel superabsorbents based on starch bound to poly (acrylic acid). The 6th National and 1st International Conference on Applications of Chemistry in Advanced Technologies.30 December, Jami Institute of Technology. Isfahan, Iran. (In Farsi).
Bai, W., Zhang, H., Liu, B., Wu, Y. and Song, J. (2010). Effects of super-absorbent polymers on the physical and chemical properties of soil following different wetting and drying cycles. Soil Use Manage, 26, 253–260.
Baiamonte, G., Crescimanno, G., Parrino, F. and De Pasquale, C. (2019). Effect of biochar on the physical and structural properties of a sandy soil. Catena, 175, 294–303. doi:10.1016/j.catena.2018.12.019
Cantón, Y., Solé-Benet, A., Asensio, C., Chamizo, S. and Puigdefábregas, J. (2009). Aggregate stability in range sandy loam soils Relationships with runoff and erosion. Catena, 77, 192–199.
Chaganti, V. N. and Crohn, D. M. (2015). Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline-sodic soil amended with composts and biochar and leached with reclaimed water. Geoderma, 259-260, 45–55.
Chaganti, V. N., Crohn, D. M. and Šimunek, J. (2015). Leaching and reclamation of a biochar and compost amended saline-sodic soil with moderate SAR reclaimed water. Agric Water Manag. 158, 255–265.
Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015). Effects of Xanthan gum biopolymer on soil strengthening. Constr. Build. Mater, 74, 65–72.
Chen J, Heiling M, Resch C, Mbaye M, Gruber R. and Dercon G. (2018). Does maize and legume crop residue mulch matter in soil organic carbon sequestration? Agriculture, ecosystems & environment, 265,123-31.
Chenu, C. and Stotzky, G. (2002). Interactions between microorganisms and soil particles: An overview. p. 4–28. Edited by P.M. Huang, J.-M. Bollag and N. Senesi. Interactions between soil particles and microorganisms: Impact on the terrestrial ecosystem. John Wiley & Sons, New York.
Colazo, J. C. and Buschiazzo, D. (2014). The Impact of Agriculture on Soil Texture Due to Wind Erosion. Land Degradation & Development, 26(1), 62–70. doi:10.1002/ldr.2297
Czarnes, S., Hallett, P. D., Bengough, A. G. and Young, I. M. (2000). Root and microbial-derived mucilages affect soil structure and water transport. European Journal of Soil Science, 51, 435–443.
Domene, X., Mattana, S., Hanley, K., Enders, A. and Lehmann, J. (2014) Medium-Term Effects of Corn Biochar Addition on Soil Biota Activities and Functions in a Temperate Soil Cropped to Corn. Soil Biology & Biochemistry, 72, 152-162. https://doi.org/10.1016/j.soilbio.2014.01.035
Dong, Q., Dang, T., Guo, S. and Hao, M. (2019). Effects of mulching measures on soil moisture and N leaching potential in a spring maize planting system in the southern Loess Plateau. Agricultural water management, 213, 803-808. Erosion. Land Degrad. Dev, 26 (1), 62–70. https://doi.org/10.1002/ldr.2297
Downie, A., Crosky, A. and. Munroe, P. (2009). Physical properties of biochar. In: Lehmann, J., Joseph, S. (Eds.), Biochar for Environmental Management: Science and Technology. Earthscan, London.
Ekhtesasi, M. R., Akhavan Qalibaf, M., Azimzadeh, H.R. and Emtehani, M.H. (2003). Effects of salts erodibility of soil by wind. Iranian J. Natural Res, 56 (1, 2), 17-28.
El-Jack, E. M. S. (2003). Effect of Gum Arabic on Some Soil Physical Properties and growth of sorghum grown on three soil types. A thesis for the degree of Master in Soil Science. B. Sc. (Agric.) Honours, 1998 Faculty of Agriculture, University of Khartoum
Farahbakhsh, A. (2014).  Effect of super absorbent and soil modifications amount on physical and chemical propertise of soil and plant, MSc Thesis, Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad.
García Moreno, R., Díaz Álvarez, M. C., Tarquis, A. M., Paz González, A. and Saa Requejo, A. (2010). Shadow analysis of soil surface roughness compared to the chain set method and direct measurement of micro-relief. Biogeosciences, 7(8), 2477–2487 doi: 10.5194/bg-7-2477-2010 (In Farsi).
Ghorbani M., Asadi H. and Abrishamkesh S. (2019). Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil, International Soil and Water Conservation Research. https://doi.org/10.1016/j.iswcr.2019.05.005.
Ghosh, B. N., Dogra, P., Sharma, N. K., Bhattacharyya, R. and Mishra, P. K. (2015). Conservation agriculture impact for soil conservation in maize–wheat cropping system in the Indian sub-Himalayas. International Soil and Water Conservation Research, 3(2), 112–118. doi:10.1016/j.iswcr.2015.05.001
Habibi, Z., Rahmati, M., Karimi, E. and Alilou, A. A (2019). The effects of Arabic gum on some physical and chemical properties of loam and clay loam soils. Journal of Water and Soil Conservation Res. (25) 5 .231-217. (In Farsi).
Hanay, A., Buyuksonmez, F. and M. and Y. Conbolat. (2004). Reclamation of saline- sodic soils with Gypsum and MSW compost. Journal of Compost science and utilization, 12,175-179.
Hansen, V., Müller-Stöver, D., Munkholm, L. J., Peltre, C., Hauggaard-Nielsen, H. and Jensen, L. S. (2016). The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: An incubation study. Geoderma, 269, 99–107. doi:10.1016/j.geoderma.2016.01.033
Heidarian, P., Joudaki, M., Darvishi Khatoni, J. and Shahbazi, R. (2015). Recognized Dust Sources in Khuzestan Province: Ministry of Industry, Mine and Trade Geological Survey of Iran South West Regional Center
Herath, H. M. S. K., Camps-Arbestain, M. and Hedley, M. (2013). Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma, 209-210, 188–197. doi:10.1016/j.geoderma.2013.06.016
Hemmat, A., Aghilinategh, N. and Sadeghi, M. (2010). Shear strength of repacked remoulded samples of a calcareous soil as affected by long-term incorporation of three organic manures in central Iran. Biosystems Engineering, 107(3), 257-261.
Hua, S and Wang, A. (2009). Synthesis, characterization and swelling behaviors of sodium alginate-g-poly (acrylic acid)/sodium humate superabsorbent. Carbohydrate Polymers, 75(1), 79–84. doi:10.1016/j.carbpol.2008.06.013
Hudson, N. (1993). Field Measurement of Soil Erosion and Runoff. Food and Agriculture Organization of the United Nations. Issue 68 of FAO soils bulletin, Volume 68 of Boletín de suelos de la FAO, 139 pp. https://books.google.com/books?id=rS1fiFU3rOwC
International Biochar Initiative. (2015). Standardized Product Definition and Product .Testing Guidelines for Biochar that is used in Soil. IBI Biochar Standards.
Karami, A., Homaee, M., Afzalinia, S., Ruhipour, H and Basirat, S. (2012). Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agriculture, Ecosystems & Environment, 148, 22–28. doi:10.1016/j.agee.2011.10.021
Keesstra, S. D., Rodrigo-Comino, J., Novara, A., Giménez-Morera, A., Pulido, M., Di Prima, S. and Cerdà, A. (2019). Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena, 174, 95–103. doi:10.1016/j.catena.2018.11.007
Khademalrasoul, A., Naveed, M., Heckrath, G., Kumari, K. G. I. D., de Jonge, L. W., Elsgaard, L., Vogel, H.J. and Iversen, B. V. (2014). Biochar Effects on Soil Aggregate Properties under No-Till Maize. Soil Science, 179(6), 273–283. doi:10.1097/ss.0000000000000069
Koupai, J. and Sohrab, F. (2004). ). Evaluating the application of superabsorbent polymers on soil water capacity and potential on three soil textures. Journal of Polymer Science and Technology, 17 (3): 163-173. https://www.sid.ir/en/journal/ViewPaper.aspx?id=40481
Kuipers, H. (1957). A reliefmeter for soil cultivation studies. Netherland J. Agric. Sci, 5(4), 255- 262. https://doi.org/10.18174/njas.v5i4.17727
Lal, R. and shukla, M.K. (2004). Principles of soil physics Marcel Dekker, New York.
Rose, D.A. (2005), Lal, R. and Shukla, M.K. Principles of Soil Physics. Marcel Dekker, New York, 2004. x + 716 pp. US$95, hardback. ISBN 0-8247-5324-0. European Journal of Soil Science, 56: 683-684. https://doi.org/10.1111/j.1365-2389.2005.0756c.x
Lehmann, J. and Joseph, S. (2009). Biochar for Environmental Management. Sci. Technology Earthscan, London, pp. 1–12 doi: 10.4324/9780203762264
Li, R., Hou, X., Jia, Z. and Han, Q. (2020). Soil environment and maize productivity in semi-humid regions prone to drought of Weibei Highland are improved by ridge-and-furrow tillage with mulching. Soil and Tillage Research, 196, 104476. doi:10.1016/j.still.2019.104476
Lima, D. L. D., Santos, S. M., Scherer, H. W., Schneider, R. J., Duarte, A. C., Santos, E. B. H. and Esteves, V. I. (2009). Effects of organic and inorganic amendments on soil organic matter properties. Geoderma, 150(1-2), 38–45. doi:10.1016/j.geoderma.2009.01.009
Liu, B. (2014). Effects of rice-husk ash on soil consistency and compatibility. Catena, 122, 54-60.
Lohrasbi, H., Khademalrasoul, A. and Farrokhian Firuzi, A. 2019. Effects of biochar and zeoplant on physical and mechanical properties of erodible soils (Case study: Bostan). Journal of Water and Soil. 33(5): 723-737. (In Farsi).
Lu, S.-G., Sun, F. F. and Zong, Y.-T. (2014). Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol). Catena, 114, 37–44. doi:10.1016/j.catena.2013.10.014
Luo, J. Q., Wang, L.-L., Li, Q.-S., Zhang, Q.-K., He, B.-Y., Wang, Y., Qin, L.P. and Li, S.-S. (2015). Improvement of hard saline–sodic soils using polymeric aluminum ferric sulfate (PAFS). Soil and Tillage Research, 149, 12–20. doi:10.1016/j.still.2014.12.014
McHenry, M. P. (2009). Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty and risk. Agriculture, Ecosystems & Environment, 129(1-3), 1–7. doi:10.1016/j.agee.2008.08.006.
Mizuta, K., Taguchi, S. and Sato, S. (2015). Soil aggregate formation and stability induced by starch and cellulose. Soil Biology and Biochemistry, 87, 90–96. doi:10.1016/j.soilbio.2015.04.011
Morkhande, V.K., Pentewar, R.S., Gapat, S.V., Sayyad, S.R., Amol, B.D., Sachin, B. and SandipK. )2016(. “A Review on Hydrogel,” Indo Am. J. Pharm.Res, 6, 4678-4689.
Murphy, B. W. (2015). Impact of soil organic matter on soil properties—a review with emphasis on Australian soils. Soil Research, 53(6), 605- 635. (In Farsi). doi: 10.1071/sr14246
Nasir, O., Artunc, F., Saeed, A., Kambal, M. A., Kalbacher, H., Sandulache, D. and Lang, F. (2008). Effects of Gum Arabic (Acacia Senegal) on Water and Electrolyte Balance in Healthy Mice. Journal of Renal Nutrition, 18(2), 230–238. doi:10.1053/j.jrn.2007.08.004
Nichol, J. W., Koshy, S. T., Bae, H., Hwang, C. M., Yamanlar, S. and Khademhosseini, A. (2010). Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 31(21), 5536–5544. doi:10.1016/j.biomaterials.2010.03.064
Ohwoavworhua, F. O. and Adelakun, T. A. (2007). Some Physical Characteristics of Microcrystalline Cellulose Obtained from Raw Cotton of Cochlospermum planchonii. Tropical Journal of Pharmaceutical Research, 4(2). doi:10.4314/tjpr.v4i2.14626
Papadopoulos, A., Bird, N., Whitmore, A., Mooney, S.(2006). The effects of organic farming on the soil physical environment. Aspects of Applied Biology 79, what will organic farming deliver? COR 2006, 263–267
Papadopoulos, A; Bird, N R A; Whitmore, A P. and Mooney, S J. (2006). The effects of organic farming on the soil physical environment. In: Atkinson, C; Ball, B; Davies, D H K; Rees, R; Russell, G; Stockdale, E A; Watson, C A; Walker, R and Younie, D (Eds.) Aspects of Applied Biology 79, What will organic farming deliver? COR 2006, Association of Applied Biologists, pp. 263-267.
Payandeh, Kh., Khashei, M. and Sabz Alipour. S. (2018). Investigating the causes of microtubules in Khuzestan province and its factors. The First International Conference and the Third National Coference on Sustainable Management of Soil and The Enviroment Resourses, Kerman, Iran.
Peake, L. R., Reid, B. J. and Tang, X. (2014). Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma, 235-236, 182–190. doi:10.1016/j.geoderma.2014.07.002
Pradeep, K. S. and Bhushan, B. (2001(. Physical characterization of a soil amended with organic residues in rice-wheat cropping system using a single value soil physical index. Soil Till. Res, 60, 143–152.
Qadir, M., Schubert, S., Ghafoor, A. and Murtaza, G. (2001). Amelioration strategies for sodic soils: a review. Land Degradation & Development, 12(4), 357–386. doi:10.1002/ldr.458
Qian, J. Y., Chen, W., Zhang, W. M. and Zhang, H. (2009). Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation: A primary approach. Carbohydrate Polymers, 78(3), 620–625. doi:10.1016/j.carbpol.2009.05.025
Rallo, G., Baiamonte, G., Juárez, J. M. and Provenzano, G. (2014). Improvement of FAO-56 Model to Estimate Transpiration Fluxes of Drought Tolerant Crops under Soil Water Deficit: Application for Olive Groves. Journal of Irrigation and Drainage Engineering, 140(9), A4014001, doi: 10.1061/ (ASCE) ir.1943-4774.0000693
Rizehbandi, E., Khademalrasoul, A. and Taghavi Zahedkolaei, M. (2020). Production of Organic and Mineral Recombinant Mulches and Their Effects on Volumetric Moisture of Erodible Soils. Iran J Soil Water Res. 51(8): 2023-2037. (In Farsi).
Rosenkranz, H., Iden. S.C. and Durner, W. (2012). Effect of biofilm on soil hydraulic properties: laboratory studies using xanthan as surrogate. Institute of Geoecology Soil Science and Soil Physics. Pub Date, April 2012, https://ui.adsabs.harvard.edu/abs/2012EGUGA.14.9306R
Rousta, M.J., Enayati, K. and Vakili, A. (2011). Laboratory study of the effect of adding mineral compounds and organic matter on the average weight-diameter of aggregates in a saline-sodium soil. Soil Research (Soil and Water Sciences), 24 (3) (Special Salinity), 229-235. (In Farsi).
Sadeghi, S. H. R., Gholami, L., Homaee, M. and Khaledi Darvishan, A. (2015). Reducing sediment concentration and soil loss using organic and inorganic amendments at plot scale. Solid Earth, (In Farsi). 6(2), 445–455, doi:10.5194/se-6-445-2015
Saleh, A. (1993). Soil roughness measurement: Chain method. Journal of Soil and Water Conservation, 48, 527-529. https://www.semanticscholar.org/paper/Soil-roughness-measurement%3A-Chain-method Saleh/37b3cb8670f03e2d8d9af4f691463cf27636b8d8
Schrieber, R. and Gareis, H. (2007). Gelatine handbook - theory and industrial practice. Weinheim, Germany. From Collagen to Gelatine, 45-117. doi: 10.1002/9783527610969
Shanmuganathan, R.T. and Oades, J.M. (1982). Effect of dispersible clay on the physical properties of the Bhorizon of a red-brown earth. Australian Journal of soil Research, 20, 315-324.
Sohi, S. P. (2012). Carbon Storage with Benefits. Science, 338(6110), 1034–1035. doi:10.1126/science.1225987 Biochar Standards.
Soinne, H., Hovi, J., Tammeorg, P. and Turtola, E. (2014). Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma, 219-220, 162–167. doi:10.1016/j.geoderma.2013.12.022
Spaccini, R., Piccolo, A., Mbagwu, J. S. C., Zena Teshale, A. and Igwe, C. A. (2002). Influence of the addition of organic residues on carbohydrate content and structural stability of some highland soils in Ethiopia. Soil Use and Management, 18(4), 404–411. doi:10.1111/j.1475-2743.2002.tb00259.x
Sun, J., He, F., Shao, H., Zhang, Z. and Xu, G. (2016). Effects of biochar application on Suaeda salsa growth and saline soil properties. Environmental Earth Sciences, 75(8), 630, doi: 10.1007/s12665-016-5440-9
Sun, Z., Arthur, E., de Jonge, L. W., Elsgaard, L. and Moldrup, P. (2015). Pore Structure Characteristics after 2 Years of Biochar Application to a Sandy Loam Field. Soil Science, 180(2), 41–46. doi:10.1097/ss.0000000000000111
Tobyo'geen , A., Prichard , T.L., Elkins , R. and pettygrove. (20070. G.S. orchard flood management practices to Resuce Erosion and protect water quality , university of cakifornia , Division of agriculture and Matural Resources publication &202 .
O'Geen, A. T, Prichard, T. L, Elkins, R. and Pettygrove, G. S. (2006). Reducing Runoff from Irrigated Lands: Orchard Floor Management Practices to Reduce Erosion and Protect Water Quality. http://dx.doi.org/10.3733/ucanr.8202 Retrieved from https://escholarship.org/uc/item/41c0w207
Van Bavel, C. H. M. (1950). Mean weight–diameter of soil aggregation as a statistical index of aggregation. Soil Science Society of America Journal, 14(C), 20-23. doi:10.2136/sssaj1950.036159950014000c0005x
Van Camp, G., Gentile, A., Bujarrabal, B., Jones, R., Montanarella, L., Olazabal, C. and Selvaradjou, S. (2004). Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection. Vol. IV: Contamination and Land Management. EUR 21319 EN. Luxembourg (Luxembourg): Office for Official Publications of the European Communities, JRC28870 https://publications.jrc.ec.europa.eu/repository/handle/JRC28870
Verheijen, F., Jeffery, S., Bastos, A. C., van der Velde, M. and Diafas, I. (2010). Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties Processes and Functions. EUR 24099 EN. Office for the Official Publications of the European Communities. Luxembourg, 149 p. https://publications.jrc.ec.europa.eu/repository/handle/JRC55799
Walia, M. K. and Dick, W. A. (2018). Selected soil physical properties and aggregate-associated carbon and nitrogen as influenced by gypsum, crop residue, and glucose, Geoderma. 320:67-73. doi:10.1016/j.geoderma.2018.01.022 https://www.sciencedirect.com/science/article/abs/pii/S0016706117306122
Walkley, A .J. and Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Journal of Soil Science, 37(1), 29–38 doi: 10.1097/00010694-193401000-00003 https://journals.lww.com/soilsci/citation/1934/01000/an_examination_of_the_degtjareff_method_for.3.aspx
Wall, A. and Heiskanen, J. (2003). Water-retention characteristics and related physical properties of soil on afforested agricultural land in Finland. Forest Ecology and Management, 186(1-3), 21–32 doi: 10.1016/s0378-1127(03)00239-1. https://www.sciencedirect.com/science/article/abs/pii/S0378112703002391
Wang, D., Fonte, S. J., Parikh, S. J., Six, J. and Scow, K. M. (2017). Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma, 303, 110–117. doi:10.1016/j.geoderma.2017.05.027 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5669273/
Whistler, R. (2012). Industrial gums: polysaccharides and their derivatives. Elsevier. https://www.sciencedirect.com/book/9780080926544/industrial-gums
Whistler, R. L. and Hymowitz, T. (1979). Guar: agronomy, production, industrial use and nutrition. Purdue University Press, South Campus Courts-D, West Lafayette https://link.springer.com/article/10.2307/2806779
Wu, Y., Xu, G. and Shao, H. B. (2014). Furfural and its biochar improve the general properties of a saline soil. Solid Earth, 5(2), 665–671 doi: 10.5194/se-5-665-2014 https://se.copernicus.org/articles/5/665/2014/
Yang, F., Zhang, G. L., Yang, J. L., Li, D. C., Zhao, Y. G., Liu, F., Yang, R. M. and Yang, F. (2014). Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes. Journal of Hydrology, 519, 3086–3093. doi:10.1016/j.jhydrol.2014.10.054 https://www.sciencedirect.com/science/article/abs/pii/S002216941400849X
Zhang, R., Huang, Q., Yan, T., Yang, J., Zheng, Y., Li, H. and Li, M. (2019). Effects of intercropping mulch on the content and composition of soil dissolved organic matter in apple orchard on the loess plateau. Journal of Environmental Management, 250, 109531. doi:10.1016/j.jenvman.2019.109531 https://www.sciencedirect.com/science/article/pii/S0301479719312496
Wong, V. N. L., Greene, R. S. B., Murphy, B.W., Dalal, R. and Mann, S. (2005). Decomposition of added organic material in salt – affected soils. pp. 333-337. In cooperative Research centre for landscape Enoronments and mineral Exploration Regional Regolith Symposia 2005: 60 years of CRC LEME. Canberra. (Ed. Iroach). (CRCLEME).