Predicting Groundwater Potential Areas Using Hybrid Artificial Intelligence Methods (Case Study: Birjand Plain)

Document Type : Research Paper


1 MSc. graduate, Civil Engineering, Water and Hydraulic Structures, Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran

2 MSc. graduate, Department of Surveying Engineering, Faculty of Surveying Engineering and Spatial Information, University of Tehran, Tehran, Iran

3 Department of Civil Engineering, K. N. Toosi University of Technology, Tehran,Iran

4 Dept. of Civil Engineering, University of Birjand, Birjand, Iran


Groundwater is one of the most valuable resources for communities, agriculture, and industry. In the present study, three new artificial intelligence models, including Modified Real AdaBoost (MRAB), Bagging model (BA), and Rotation Forest model (RF), have been developed by the Functional Tree Base Classifier (FT) model to predict groundwater potential in Birjand plain area. Therefore, for implementation, geo-hydrological data of 37 groundwater wells and ten factors of topography, hydrology, and geology were used. The performance of these models was evaluated using the area under the curve (AUC) and other statistical indicators. The results showed that although all the hybrid models developed in this study increased the prediction accuracy, MRAB-FT model (AUC = 0.742) has higher accuracy in predicting potential groundwater areas in Birjand plain. Accurate mapping of groundwater potential areas while maintaining a balance between consumption and operation will help feed the aquifer for optimal use of groundwater resources.


Abedini, M., Ghasemian, B., Shirzadi, A., Shahabi, H., Chapi, K., Pham, B. T. and Tien Bui, D. (2019). A novel hybrid approach of bayesian logistic regression and its ensembles for landslide susceptibility assessment. Geocarto International, 34(13), 1427-1457.
Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.
Chen, W., Tsangaratos, P., Ilia, I., Duan, Z. and Chen, X. (2019). Groundwater spring potential mapping using population-based evolutionary algorithms and data mining methods. Science of The Total Environment, 684, 31-49.
Chen, W., Zhao, X., Tsangaratos, P., Shahabi, H., Ilia, I., Xue, W. and Ahmad, B. B. (2020). Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping. Journal of Hydrology, 583, 124602.
Díaz-Alcaide, S. and Martínez-Santos, P. (2019). Advances in groundwater potential mapping. Hydrogeology Journal, 27(7), 2307-2324.
Eftekhari, M. and Akbari, M. (2020). Development of DRASTIC Method Considering Land Use to Analyze the Potential of Aquifer Pollution in Semi-Arid Regions. Environment and Water Engineering, 6(4), 345-359. (In Farsi)
Eftekhari, M., Eslaminezhad, S., Haji Elyasi A. and Akbari, M. (2021). Geostatistical Evaluation with Drinking Groundwater Quality Index (DGWQI) in Birjand Plain Aquifer. Environment and Water Engineering; 7(2), 268-279. (In Farsi)
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters 27, 861-874.
Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139.
Freund, Y., Schapire, R. and Abe, N. (1999). A short introduction to boosting. Journal-Japanese Society for Artificial Intelligence, 14(771-780), 1612.
Friedman, J., Hastie, T. andTibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Annals of statistics, 28(2), 337-407.
Gama, J. (2004). Functional trees. Machine Learning, 55(3), 219-250.
Gorsevski, P. V., Gessler, P. E., Foltz, R. B. and Elliot, W. J. (2006). Spatial prediction of landslide hazard using logistic regression and ROC analysis. Transactions in GIS, 10(3), 395-415.
He, Q., Xu, Z., Li, S., Li, R., Zhang, S., Wang, N. and Chen, W. (2019). Novel entropy and rotation forest-based credal decision tree classifier for landslide susceptibility modeling. Entropy, 21(2), 106.
Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine learning, 11(1), 63-90.
Hong, H., Panahi, M., Shirzadi, A., Ma, T., Liu, J., Zhu, A. X. and Kazakis, N. (2018). Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Science of the total Environment, 621, 1124-1141.
Jha, M. K., Chowdary, V. M. and Chowdhury, A. (2010). Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology journal, 18(7), 1713-1728.
Kumar, A. and Krishna, A. P. (2018). Assessment of groundwater potential zones in coal mining impacted hard-rock terrain of India by integrating geospatial and analytic hierarchy process (AHP) approach. Geocarto International, 33(2), 105-129.
Lee, S., Hong, S. M. and Jung, H. S. (2018). GIS-based groundwater potential mapping using artificial neural network and support vector machine models: the case of Boryeong city in Korea. Geocarto international, 33(8), 847-861.
Miraki, S., Zanganeh, S. H., Chapi, K., Singh, V. P., Shirzadi, A., Shahabi, H. and Pham, B. T. (2019). Mapping groundwater potential using a novel hybrid intelligence approach. Water resources management, 33(1), 281-302.
Moghaddam, D. D., Rezaei, M., Pourghasemi, H. R., Pourtaghie, Z. S. and Pradhan, B. (2015). Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arabian Journal of Geosciences, 8(2), 913-929.
Naghibi, S. A., Pourghasemi, H. R. and Dixon, B. (2016). GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental monitoring and assessment, 188(1), 1-27.
Nampak, H., Pradhan, B. and Abd Manap, M. (2014). Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283-300.
Nguyen, P. T., Tuyen, T. T., Shirzadi, A., Pham, B. T., Shahabi, H., Omidvar, E. and Bui, D. T. (2019). Development of a novel hybrid intelligence approach for landslide spatial prediction. Applied Sciences, 9(14), 2824.
Nhu, V. H., Rahmati, O., Falah, F., Shojaei, S., Al-Ansari, N., Shahabi, H. and Ahmad, B. B. (2020). Mapping of groundwater spring potential in karst aquifer system using novel ensemble bivariate and multivariate models. Water, 12(4), 985.
Oh, H. J., Kim, Y. S., Choi, J. K., Park, E. and Lee, S. (2011). GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. Journal of Hydrology, 399(3-4), 158-172.
Pham, B. T., Prakash, I., Dou, J., Singh, S. K., Trinh, P. T., Tran, H. T. and Bui, D. T. (2020). A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto International, 35(12), 1267-1292.
Rodriguez, J. J., Kuncheva, L. I. and Alonso, C. J. (2006). Rotation forest: A new classifier ensemble method. IEEE transactions on pattern analysis and machine intelligence, 28(10), 1619-1630.
Shirzadi, A., Bui, D. T., Pham, B. T., Solaimani, K., Chapi, K., Kavian, A. and Revhaug, I. (2017). Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environmental Earth Sciences, 76(2), 60.
Tien Bui, D., Shahabi, H., Omidvar, E., Shirzadi, A., Geertsema, M., Clague, J. J. and Lee, S. (2019). Shallow landslide prediction using a novel hybrid functional machine learning algorithm. Remote Sensing, 11(8), 931.
Xia, J., Du, P., He, X. and Chanussot, J. (2013). Hyperspectral remote sensing image classification based on rotation forest. IEEE Geoscience and Remote Sensing Letters, 11(1), 239-243.