The Effect of Modified Peanut Shell Biochar by Potassium Permanganate on Cd (II) Removal from Aqueous Media

Document Type : Research Paper


1 Department of soil science, Faculty of agriculture, University of Zanjan, Zanjan, Iran

2 Associate Professor, Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

3 Postdoctoral Researcher, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran


Cadmium (Cd) is one of the most toxic and non-biodegradable heavy metals which can be emitted into the aquatic ecosystem, accumulated in the food chain and posing a serious threat to the aquatic organism and human health. In this study, the effect of peanut shell (PN), pristine biochar (PBc), and modified biochar by potassium permanganate (PPBc) on cadmium removal from aqueous media was examined. Some characteristics of absorbents such as pH, cation exchange capacity (CEC), surface functional groups, and values of C, N, H and surface area were investigated. Adsorption isotherms (Langmuir, Freundlich, and Temkin) and Kinetic models (pseudo-first-order, pseudo-second-order, and Elovich) were used to explain the adsorption process. Results showed pH, cation exchange capacity and the oxygen containing functional groups such as COOH and Mn-O increased after the chemical treatment of biochar. Maximum sorption capacity obtained at the equilibrium time 120 min, adsorbent dosage of 0.25 g, and pH=6. Langmuir isotherm and the pseudo-second-order kinetic model have the best fitness on cadmium biosorption data. The RL values for adsorbents were calculated to be 0.02 to 0.37 with initial concentration ranging from 10 to 60 mg/L, which indicated the Langmuir isotherm of Cd (II) was a favorable isotherm in the adsorption process. Results showed that the Langmuir maximum Cd adsorption capacities of the modified biochar (28.24 mg/g) is higher than the one in pristine biochar (13.40 mg/g). PN did not show a significant effect on the Cd sorption. This work shows that the modified biochar by potassium permanganate may be an effective, low-cost, and environmentally-friendly adsorbent to remediate Cd contamination in the environment.


Main Subjects

Abrishamkesh, S., Gorji, M., Asadi, H., Bagheri-Marandi, G., Pourbabaee, A. (2015). Effects of rice husk biochar application on the properties of alkaline soil and lentil growth. Plant, Soil and Environment, 61(11), 475-482.
Beesley, L., Moreno-Jiménez, E.,Gomez-Eyles, J.L., Harris, E., Robinson, B., Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental pollution, 159(12), 3269-3282.
Cha, J.S., Park, S.H., Jung, S.C., Ryu,C., Jeon, J.K., Shin, M.C., Park, Y.K. (2016). Production and utilization of biochar: a review. Journal of Industrial and Engineering Chemistry, 40, 1-15.
Cheng, Q., Huang, Q., Khan, S., Liu, Y., Liao, Z., Li, G., Ok, Y.S. (2016). Adsorption of Cd by peanuthusks and peanut husk biochar from aqueous solutions. Ecological Engineering, 87, 240-245.
Deng, J., Liu, Y., Liu, S., Zeng, G., Tan, X., Huang, B., Tang, X., Wang, S., Hua, Q., Yan, Z. (2017). Competitive adsorption of Pb (II), Cd (II) and Cu (II) onto chitosan-pyromellitic dianhydride modified biochar. Journal of colloid and interface science, 506, 355-364.
Ding, Z., Hu, X., Wan, Y., Wang, S., Gao, B. (2016). Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. Journal of Industrial and Engineering Chemistry, 33, 239-245.
Fan, S., Li, H., Wang, Y., Wang, Z., Tang, J., Tang, J., Li, X. (2018). Cadmium removal from aqueous solution by biochar obtained by co-pyrolysis of sewage sludge withtea waste. Research on Chemical Intermediates, 44(1), 135-154.
Freundlich, H. (1909). Kolloidchemie. Akademischer Verlagsgeselschaft, Leipzig.
Gaskin, J.W., Steiner, C., Harris, K., Das, K., Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 51(6), 2061-2069.
Goh, K.-H., Lim, T.-T., Dong, Z. (2008). Application of layered double hydroxides for removal of oxyanions: a review. Water research, 42(6-7), 1343-1368.
Hamzenejad, R., Sepehr, E., Samadi, A.,Rasouli Sadaghiani., Khodaverdiloo, H. (2017). Kinetic and thermodynamic study of cadmium (Cd) adsorption by grape and apple pruning residues biochars. Journal of Environmental Studies, 43(3), 401-416.
Ho, Y.S. and McKay, G. (1999). Pseudo-second order model for sorption processes. Process biochemistry, 34(5), 451-465.
Juang, R.-S., Chen, M.-L. (1997). Application of the Elovich equation to the kinetics of metal sorption with solvent-impregnated resins. Industrial & Engineering Chemistry Research, 36(3), 813-820.
Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24, 1-39.
Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American chemical society, 38(11), 2221-2295.
Li, F., Shen, K., Long, X., Wen, J., Xie, X., Zeng, X., Liang, Y., Wei, Y., Lin, Z., Huang, W. (2016). Preparation and characterization of biochars from Eichornia crassipes for cadmium removalin aqueous solutions. PloS one, 11(2), 132-148.
Liang, J., Li, X., Yu, Z., Zeng, G., Luo, Y., Jiang, L., Yang, Z., Qian, Y., Wu, H. (2017). Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb (II) and Cd (II). ACS Sustainable Chemistry & Engineering, 5(6), 5049-5058.
Liu, Y., Xiao, T., Ning, Z., Li, H., Tang, J., Zhou, G. (2013). High cadmium concentration in soil in the Three Gorges region: geogenic source and potential bioavailability. Applied geochemistry,137,149-156.
Luo, M., Lin, H., Li, B., Dong, Y., He, Y., Wang, L. (2018). A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water. Bioresource technology, 259, 312-318.
Maia, C.M.B., Madari, B.E., Novotny, E.H. (2011).Advances in biochar research in Brazil. Embrapa Solos-Artigo em periódico indexado (ALICE).
Mohan, D., Pittman Jr, C.U., Bricka, M., Smith, F., Yancey, B., Mohammad, J., Steele, P.H., Alexandre-Franco, M.F., Gómez-Serrano, V., Gong, H. (2007). Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of colloid and interface science, 310(1), 57-73.
Novak, J.M., Busscher, W.J., Laird, D.L., Ahmedna, M., Watts, D.W., Niandou, M.A. (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil science, 174(2), 105-112.
Ouředníček, P., Hudcová, B., Trakal, L., Pohořelý, M., Komárek, M. (2019). Synthesis of modified amorphous manganese oxide using low-cost sugars andbiochars: Material characterization and metal (loid) sorption properties. Science of The Total Environment.
Qi, F., Yan, Y., Lamb, D., Naidu, R., Bolan, N.S., Liu, Y., Ok, Y.S., Donne, S.W., Semple, K.T. (2017). Thermal stability of biochar and its effectson cadmium sorption capacity. Bioresource technology, 246, 48-56.
Rahmani, A., Mousavi, H.Z., Fazli, M. (2010). Effect of nanostructure alumina on adsorption of heavy metals. Desalination, 253(1-3), 94-100.
Rajapaksha, A.U., Chen, S.S., Tsang, D.C., Zhang,M., Vithanage, M., Mandal, S., Gao, B., Bolan, N.S., Ok, Y.S. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere, 148, 276-291.
Reddy, D.H.K., Lee, S.-M. (2014). Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454, 96-103.
Ruthiraan, M., Mubarak, N.M., Thines, R.K., Abdullah, E.C.,Sahu, J.N., Jayakumar, N.S., Ganesan, P. (2015). Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd 2+ ions from wastewater. Korean Journal of Chemical Engineering, 32(3), 446-457.
Sun, C., Chen, T., Huang, Q., Wang, J., Lu, S., Yan, J. (2019). Enhanced adsorption for Pb (II) and Cd (II) of magnetic rice husk biochar by KMnO 4 modification. Environmental Science and Pollution Research, 1-12.
Tan, Z., Wang, Y., Kasiulienė, A., Huang, C., Ai, P. (2017). Cadmium removal potential by rice straw-derived magnetic biochar. Clean Technologies and Environmental Policy, 19(3), 761-774.
Temkin, M. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta physiochim. URSS, 12, 327-356.
Trakal, L., Veselská, V., Šafařík, I., Vítková, M., Číhalová, S., Komárek, M. (2016). Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresource technology, 203, 318-324.
Wang, H., Gao, B., Fang, J., Ok, Y.S., Xue, Y., Yang, K., Cao, X. (2018). Engineered biochar derived from eggshell-treated biomass for removal of aqueous lead. Ecological Engineering, 121, 124-129.
Wongrod, S., Simon, S., van Hullebusch, E.D., Lens, P.N., Guibaud, G. (2018). Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As (III and V) and Cd (II) sorption. International biodeterioration & biodegradation, 135, 96-102.
Yang, J., Ma, T., Li, X., Tu, J., Dang, Z., Yang, C. (2018). Removal of Heavy Metals and Metalloids by Amino-Modified Biochar Supporting Nanoscale Zero-Valent Iron. Journal of environmental quality.
Yao, Y., Gao, B., Inyang, M., Zimmerman, A.R., Cao, X., Pullammanappallil, P., Yang, L. (2011). Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresource technology, 102(10), 6273-6278.
Yu, J., Zhu, Z., Zhang, H., Qiu, Y., Yin, D. (2018). Mg–Fe layered double hydroxide assembled on biochar derived from rice husk ash: facile synthesis and application in efficient removal of heavy metals. Environmental Science and Pollution Research, 25(24), 24293-24304.
Yu, Z., Qiu, W., Wang, F., Lei, M., Wang, D., Song, Z. (2017). Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Chemosphere, 168, 341-349.
Zhang, Z., Abuduwaili, J., Jiang, F. (2015). Sources, pollution statue and potential ecological risk of heavy metals in surface sediments of Aibi Lake, Northwest China. Huan jing ke xue= Huanjing kexue, 36(2), 490-496.