ارزیابی روند تبخیر- تعرق پتانسیل گیاه مرجع در حوضه آبریز قزل‌اوزن تحت شرایط تغییر اقلیم

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

2 دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

3 استاد، گروه مهندسی آب و محیط زیست، دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران

چکیده

حوضه قزل‌اوزن یکی از حوضه‏های مهم ایران در تأمین غلات مورد نیاز مردم می‏باشد. مقدار تبخیر- تعرق پتانسیل گیاه مرجع (ET0) در افق‏های 2030، 2050 و 2070 با دو سناریوی RCP4.5 (انتشار پایین) و RCP8.5 (انتشار بالا) ارزیابی شد. از خروجی چهار مدل GCM موجود در CMIP5 و ریزمقیاس نمایی آماری LARS-WG6 استفاده گردید. در این مطالعه، از آمار روزانه 2016-1989 شش ایستگاه همدید (زنجان، میانه، خلخال، زرینه، قروه و بیجار) استفاده شد. معنی‏داری اختلاف میانگین‏های‏ ET0 در دوره پایه با مقادیر نظیر هر یک از افق‏های آتی با آزمون تی استیودنت در سه مقیاس ماهانه، فصلی و سالانه در سطح 5 درصد آزمایش شد. روند تغییرات ET0 در سه مقیاس زمانی مذکور در دو دوره پایه و دوره آتی 2080-2021 (با هر دو سناریوی RCP) با روش مان- کندال (MK) در سطح 5 درصد تحلیل گردید. اثر ضرایب خودهمبستگی معنی‏دار در روش MK حذف شد. شیب خط روند با روش سن تخمین زده شد. نتایج نشان داد که در کل حوضه، براساس سناریوی RCP4.5 مقدار ET0 در افق‏های 2030، 2050 و 2070 به ترتیب 8/1، 7/3 و 7/5 درصد افزایش خواهد یافت. این رقم برای سناریوی RCP8.5 به ترتیب، 7/1، 4/5 و 1/9 درصد به‏دست آمد. بیشترین افزایش ET0 در ماه ژوئیه انتظار می‏رود. میزان ET0 سالانه در همه ایستگاه‏ها در آینده افزایش خواهد یافت. اختلاف میانگین‏های ET0 در ماه‏های ژوئن، ژوئیه، اوت، فصل تابستان و مقادیر سالانه آن در تمام دوره- سناریوها نسبت به دوره پایه معنی‏دار بودند. در دوره آتی، طبق هر دو سناریو در همه ایستگاه‏ها، روند ET0 سالانه صعودی بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Potential Reference Crop Evapotranspiration Trend in Ghezel Ozan River Basin under Climate Change Conditions

نویسندگان [English]

  • Amin Sadeqi 1
  • Yagob Dinpashoh 2
  • Mahdi Zarghami 3
1 Master of Science, Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 Associate Professor, Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 Professor, Department of Water and Environmental Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
چکیده [English]

Ghezel Ozan River Basin is one of the important basin in Iran, which supply people grains requirements. The amount of potential reference crop evapotranspiration (ET0) was evaluated with RCP4.5 (low emission) and RCP8.5 (high emission) scenarios on the horizons 2030, 2050, and 2070. The output of four GCM models in CMIP5 and the LARS-WG6 statistical downscaling were used. In this study, the daily historical records of six synoptic stations (namely Zanjan, Mianeh, Khalkhal, Zarrineh, Qorveh, and Bijar) from 1989-2016 were used. Differences of mean ET0 time series in the base and future time periods were tested using the t-test method in three-time scales (i.e. monthly, seasonal, and annual scales) at 5% significance level. Trends of ET0 in the proposed three-time scales were analyzed in the base and 2021-2080 periods with both RCP scenarios using the Mann-Kendall (MK) method at 5% significance level. The effect of significant autocorrelation coefficients was eliminated in MK method. The slope of trend lines was estimated by Sen’s estimator. Results showed in the whole basin, based on the RCP4.5 scenario in the horizons of 2030, 2050, and 2070, the amount of ET0 will be increased by 1.8%, 3.7%, and 5.7%, respectively. These records were about 1.7, 5.4, and 9.1 percent using the RCP8.5 scenario, respectively. The most increase in ET0 was observed for July. The annual ET0 values would be increased in the future in all stations. The mean differences of ET0 in June, July, August, summer, and annual time series with respect to the base time period were significant for all the stations and for all the future periods (under two RCP scenarios). In the future period, according to the both scenarios at all stations, the annual ET0 trend was upward.

کلیدواژه‌ها [English]

  • climate change
  • Evapotranspiration
  • Ghezel Ozan
  • RCP scenarios
Alizadeh, A., Sayari, N., Hesami Kermani, M., R., Bannayan Aval, M. and Farid Hossaini, A. (2010) Assessment of climate change potential impacts on agricultural water use and water resources of Kashaf Rood basin. Journal of Water and Soil, 24(4):815–835 (in Persian).

Attarod, P., Kheirkhah, F., Khalighi Sigaroodi, S. and Sadeghi, S.M.M. (2015) Sensitivity of reference evapotranspiration to global warming in the Caspian region, north of Iran. Journal of Agricultural Science and Technology, 17(4):869–883.

Babaeian, I. and Kouhi, M. (2010) Agroclimatic indices assessment over some selected weather stations of Khorasan Razavi province under climate change scenarios. Journal of Water and Soil, 26(4):953–967 (in Persian).

Babamiri, O., and Dinpashoh, Y. (2016). Comparison and Evaluation of Twenty Methods for Estimating Reference Evapotranspiration Based on Three General Categories: Air Temperature, Solar Radiation and Mass Transfer in the Basin of Lake Urmia. Water and Soil Science, 20(77): 145-161 (in Persian).

Bannayan, M. and Eyshi Rezaei, E. (2014) Future production of rainfed wheat in Iran (Khorasan province): Climate change scenario analysis. Mitigation and Adaptation Strategies for Global Change, 19(2):211–227.

Barzegari, F. and Malekinezhad, F. (2015) Estimating Irrigation Requirements under Climate Change (Case Study: Yazd-Ardakan Plain). Journal of Irrigation Science and Engineering, 39(4):85–95 (in Persian).

Baule, W., Allred, B., Frankenberger, J., Gamble, D., Andresen, J., Gunn, KM. and Brown, L. (2017) Northwest Ohio crop yield benefits of water capture and subirrigation based on future climate change projections. Agricultural Water Management, 189:87–97.

Behmanesh, J., Azad Talatappeh, N., Montaseri, M., Rezayi, H. and Khalili, K. (2014) Climate Change Impact on Reference Evapotranspiration, Precipitation Deficit and Vapor Pressure Deficit in Urmia. Water and Soil Science, 25(2):79–91 (in Persian).

Chen, H., Guo, J., Zhang, Z. and Xu, CY. (2013) Prediction of temperature and precipitation in Sudan and South Sudan by using LARS-WG in future. Theoretical and Applied Climatology, 113(3–4):363–375.

Dodangeh, E., Soltani, S. and Rezaei, A. (2016) Regional frequency analysis of minimum flows using linear moments and multivariate methods. Iran Water Research Journal, 10(1):173–176 (in Persian).

Gao, C., He, Z., Pan, S., Xuan, W. and Xu, YP. (2018) Effects of climate change on peak runoff and flood levels in Qu River Basin, East China. Journal of Hydro-Environment Research, (article in press).

Gohari, A., Mirchi, A. and Madani, K. (2017) Erratum to: System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran. Water Resources Management. Water Resources Management, 31(13):4367–4368.

Goudarzi, M., Salahi, B. and Hosseini, S. A. (2018) Estimation of Evapotranspiration Rate Due to Climate Change in the Urmia Lake Basin. Iran-Watershed Management Science & Engineering, 12(41):1–13 (in Persian).

Gunawardhana, L.N., Al-Rawas, G.A. and Al-Hadhrami, G. (2018) Quantification of the changes in intensity and frequency of hourly extreme rainfall attributed climate change in Oman. Natural Hazards, 92(3):1649–1664.

Hadi, F., Khashei Siuki, A., Shadidi, A. and Farzaneh, M.R. (2016) Examination the Effect of Climate Change on Potential Evapotranspiration in Different Climates. Iranian Journal of Irrigation and Drainage, 2(10):230-240 (in Persian).

Hamed, K.H. and Rao, A.R. (1998) A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4):182–196.

IPCC (2007). Climate Change: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

IPCC. Climate Change (2013). The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press

Jafari, G. and Bakhtiyari, F. (2016) Analyze of hydro-geoneurons of Ghezel Ozan basin. Geography and Development Iranian Journal, 45:221–242 (in Persian).

Kendall, MG. (1975) Rank correlation methods. Charles Griffin, London 35.

Khaldi, A., Khaldi, A. and Hamimed, A. (2014) Using the Priestley-Taylor expression for estimating actual evapotranspiration from satellite Landsat ETM + data. Proceedings of the International Association of Hydrological Sciences, 364:398–403

Khalil, A.A. (2013) Effect of Climate Change on Evapotranspiration in Egypt. Researcher, 5(1):7–12.

Khazaei, M. R. (2016) Climate change impact assessment on hydrological regimes of a mountainous river basin in Iran. Journal of Water and Soil Resources Conservation, 5(3):43–54 (in Persian).

Khazaei, M. R. and Byzedi, M. (2016) Climate change impact on annual meteorological and hydrological variables of the Sirvan Basin. Iran-Water Resources Research, 12(2):38–48 (in Persian).

Koocheki, A., Nassiri Mahallati, M. and Jafari, L. (2016) Evaluation of climate change effect on agricultural production of Iran: I. Predicting the future agroclimatic conditions. Iranian Journal of Field Crops Research, 13(4):651–664 (in Persian).

Kundu, S., Khare, D. and Mondal, A. (2016) Future changes in rainfall, temperature and reference evapotranspiration in the central India by least square support vector machine. Geoscience Frontiers, 8(3):583–596.

Lang, D., Zheng, J., Shi, J., Liao, F., Ma, X., Wang, W., ... & Zhang, M. (2017). A Comparative Study of Potential Evapotranspiration Estimation by Eight Methods with FAO Penman–Monteith Method in Southwestern China. Water, 9(10):734.‏

Maidment, D.R. (1993) Handbook of Hydrology. McGraw-Hill, New York, USA.

Mann, H.B. (1945) Nonparametric tests against trend. Journal of the Econometric Society, 13(3):245–259.

Mehan, S., Guo, T., Gitau, M.W. and Flanagan, D.C. (2017) Comparative Study of Different Stochastic Weather Generators for Long-Term Climate Data Simulation. Climate, 5(26):1–40.

Parajuli, P.B., Jayakody, P., Sassenrath, G.F. and Ouyang, Y. (2016) Assessing the impacts of climate change and tillage practices on stream flow , crop and sediment yields from the Mississippi River Basin. Agricultural Water Management, 168:112–124.

Priestley, C.H.B. and Taylor, R.J. (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2):81–92.

Rahman, M.A., Yunsheng, L., Sultana, N. and Ongoma, V. (2018) Analysis of reference evapotranspiration ­ ( ET 0 ) trends under climate change in Bangladesh using observed and CMIP5 data sets. Meteorology and Atmospheric Physics, 1-17.

Rezaie, A. (2013) Statistics and Probability (Application in Agriculture). Jahad Daneshghahi Publication, (in Persian).

Rietveld, M. R. (1978) A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine. Agricultural Meteorology, 19(2-3):243-252.‏

Saadi, S., Todorovic, M., Tanasijevic, L., Pereira, L.S., Pizzigalli, C. and Lionello, P. (2014) wheat and tomato crop evapotranspiration , irrigation requirements and yield. Agricultural Water Management, 147:103–115.

Sanikhani, H., Kisi, O. and Amirataee, B. (2017) Impact of climate change on runoff in Lake Urmia basin , Iran. Theoretical and Applied Climatology, 132(1–2):491–502.

Semenov, M. A. (2008). Simulation of extreme weather events by a stochastic weather generator. Climate Research, 35(3):203-212.‏

Sen, P.K. (1968) Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324):1379–1389.

Stevens, T. and Madani, K. (2016) Future climate impacts on maize farming and food security in Malawi. Scientific Reports Nature Publishing Group, 6:36241.

Tanasijevic, L., Todorovic, M., Pereira, L.S., Pizzigalli, C. and Lionello, P. (2014) Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agricultural Water Management, 144:54–68.

Weiß, M., & Menzel, L. (2008). A global comparison of four potential evapotranspiration equations and their relevance to stream flow modelling in semi-arid environments. Advances in Geosciences, 18, 15-23.‏

Zareian, M.J. and Eslamian, S. (2014) A modified regionalization weighting approach for climate change impact assessment at watershed scale. Water and Soil Science, 20(75):113–128.