Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19-33.
Chatterjee, S., Lim, S. R., & Woo, S. H. (2010). Removal of Reactive Black 5 by zero-valent iron modified with various surfactants. Chemical Engineering Journal, 160(1), 27-32.
Cui, X., Hao, H., Zhang, C., He, Z., & Yang, X. (2016). Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars. Science of the Total Environment, 539, 566-575.
Foo, K. Y., & Hameed, B. H. (2009). An overview of landfill leachate treatment via activated carbon adsorption process. Journal of hazardous materials, 171(1-3), 54-60.
Hamzenejad Taghlidabad, R., & Sepehr, E. (2018). Heavy metals immobilization in contaminated soil by grape-pruning-residue biochar. Archives of Agronomy and Soil Science, 64(8), 1041-1052.
Hamzenejad, R., Sepehr, E., Samadi, A., Rasouli-Sadaghiani, M.H., Khodaverdiloo, H. (2018). Effect of Apple Pruning Residue Biochar on Chemical Forms, Mobility Factor Index (MF) and Reduced Partition Index (IR) of Heavy Metals in a Contaminated Soil. Water & Soil Science, 28(3), 65-78. (In Farsi)
Hamzenejad, R., Sepehr, E., Samadi, A., Rasouli-Sadaghiani, M.H., Khodaverdiloo, H. (2018). Effect of Nano Zero Valent Iron Particles (nZVI) on Mobility and Chemical Forms of Cadmium and Lead in Soil. Iranian Journal of Soil & Water Research, 49(3), 549-559. (In Farsi)
Jalali, M., & Rostaii, L. (2011). Cadmium distribution in plant residues amended calcareous soils as a function of incubation time. Archives of Agronomy and Soil Science, 57(2), 137-148.
Kandpal, G., Srivastava, P. C., & Ram, B. (2005). Kinetics of desorption of heavy metals from polluted soils: Influence of soil type and metal source. Water, Air, and Soil Pollution, 161(1-4), 353-363.
Khanmirzaei, A., Bazargan, K., Amir Moezzi, A., Richards, B. K., & Shahbazi, K. (2013). Single and sequential extraction of cadmium in some highly calcareous soils of southwestern Iran. Journal of soil science and plant nutrition, 13(1), 153-164.
Kirpichtchikova, T. A., Manceau, A., Spadini, L., Panfili, F., Marcus, M. A., & Jacquet, T. (2006). Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochimica et Cosmochimica Acta, 70(9), 2163-2190.
Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–a review. Waste management, 28(1), 215-225.
Li, X. Q., & Zhang, W. X. (2007). Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). The Journal of Physical Chemistry C, 111(19), 6939-6946.
Liu, X., Song, Q., Tang, Y., Li, W., Xu, J., Wu, J. & Brookes, P. C. (2013). Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Science of the Total Environment, 463, 530-540.
Moazallahi, M., Baghernejad, M., Jafari Haghighi, M., & Saffari, M. (2017). Stabilization of lead in two artificial contaminated calcareous soils using stabilized nanoscale zero-valent iron particles with/without chelating agents. Archives of Agronomy and Soil Science, 63(4), 565-577.
Peng, X., Liu, X., Zhou, Y., Peng, B., Tang, L., Luo, L. & Zeng, G. (2017). New insights into the activity of a biochar supported nanoscale zerovalent iron composite and nanoscale zero valent iron under anaerobic or aerobic conditions. RSC Advances, 7(15), 8755-8761.
Polettini, A., Pomi, R., & Rolle, E. (2007). The effect of operating variables on chelant-assisted remediation of contaminated dredged sediment. Chemosphere, 66(5), 866-877.
Qian, L., Zhang, W., Yan, J., Han, L., Chen, Y., Ouyang, D., & Chen, M. (2017). Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr (VI) removal. Environmental pollution, 223, 153-160.
Quan, G., Sun, W., Yan, J., & Lan, Y. (2014). Nanoscale zero-valent iron supported on biochar: characterization and reactivity for degradation of acid orange 7 from aqueous solution. Water, Air, & Soil Pollution, 225(11), 2195.
Rajapaksha, A. U., Chen, S. S., Tsang, D. C., Zhang, M., Vithanage, M., Mandal, S. & Ok, Y. S. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere, 148, 276-291.
Saffari, M. (2018a). Chemical stabilization of some heavy metals in an artificially multi-elements contaminated soil, using rice husk biochar and coal fly ash. Pollution, 4(4), 547-562.
Saffari, M. (2018b). Response surface methodological approach for optimizing the removal of cadmium from aqueous solutions using pistachio residues biochar supported/non-supported by nanoscalezero-valent iron. Main Group Metal Chemistry, 41(5-6), 167-181.
Saffari, M., Karimian, N., Ronaghi, A., Yasrebi, J., & Ghasemi-Fasaei, R. (2015). Stabilization of nickel in a contaminated calcareous soil amended with low-cost amendments. Journal of soil science and plant nutrition, 15(4), 896-913.
Saffari, M., Karimian, N., Ronaghi, A., Yasrebi, J., & Ghasemi-Fasaei, R. (2016). Stabilization of lead as affected by various amendments and incubation time in a calcareous soil. Archives of Agronomy and Soil Science, 62(3), 317-337.
Saffari, M., Yasrebi, J., Karimian, N., & Shan, X. (2009). Evaluation of three sequential extraction methods for fractionation of zinc in calcareous and acidic soils. Research Journal of Biological Sciences, 4(7), 848-857.
Sajadi Tabar, S., & Jalali, M. (2013). Kinetics of Cd release from some contaminated calcareous soils. Natural resources research, 22(1), 37-44.
Santos, S., Costa, C. A., Duarte, A. C., Scherer, H. W., Schneider, R. J., Esteves, V. I., & Santos, E. B. (2010). Influence of different organic amendments on the potential availability of metals from soil: A study on metal fractionation and extraction kinetics by EDTA. Chemosphere, 78(4), 389-396.
Sharma, R. K., Wooten, J. B., Baliga, V. L., Lin, X., Chan, W. G., & Hajaligol, M. R. (2004). Characterization of chars from pyrolysis of lignin. Fuel, 83(11-12), 1469-1482.
Shi, H. S., & Kan, L. L. (2009). Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete. Journal of hazardous materials, 164(2-3), 750-754.
Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research, 48(7), 516-525.
Singh, J. P., Karwasra, S. P. S., & Singh, M. (1988). Distribution and forms of copper, iron, manganese, and zinc in calcareous soils of India. Soil Science, 146(5), 359-366.
Shu, H. Y., Chang, M. C., Chen, C. C., & Chen, P. E. (2010). Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution. Journal of Hazardous Materials, 184(1-3), 499-505.
Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. In Advances in agronomy (Vol. 105, pp. 47-82). Academic Press.
Su, H., Fang, Z., Tsang, P. E., Fang, J., & Zhao, D. (2016). Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Environmental Pollution, 214, 94-100.
Sunkara, B., Zhan, J., He, J., McPherson, G. L., Piringer, G., & John, V. T. (2010). Nanoscale zerovalent iron supported on uniform carbon microspheres for the in situ remediation of chlorinated hydrocarbons. ACS Applied Materials & Interfaces, 2(10), 2854-2862.
Tan, X. F., Liu, Y. G., Gu, Y. L., Xu, Y., Zeng, G. M., Hu, X. J., ... & Li, J. (2016). Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresource technology, 212, 318-333.
Yan, J., Han, L., Gao, W., Xue, S., & Chen, M. (2015). Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene. Bioresource technology, 175, 269-274.
Yang, X., Liu, J., McGrouther, K., Huang, H., Lu, K., Guo, X. & Wang, H. (2016). Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environmental Science and Pollution Research, 23(2), 974-984.
Zhang, W. X. (2003). Nanoscale iron particles for environmental remediation: an overview. Journal of nanoparticle Research, 5(3-4), 323-332.
Zhou, Y., Gao, B., Zimmerman, A. R., Chen, H., Zhang, M., & Cao, X. (2014). Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresource technology, 152, 538-542.
Zhu, S., Ho, S. H., Huang, X., Wang, D., Yang, F., Wang, L., & Ma, F. (2017). Magnetic nanoscale zerovalent iron assisted biochar: interfacial chemical behaviors and heavy metals remediation performance. ACS Sustainable Chemistry & Engineering, 5(11), 9673-9682.