پارامتریابی و ارزیابی مدل DSSAT/CANEGRO برای نیشکر رقم CP57-614 در شرایط اقلیمی خوزستان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای گروه آبیاری و زهکشی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز

2 استاد گروه مهندسی آب دانشگاه چمران اهواز

3 استاد بازنشسته گروه آبیاری و زهکشی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز

چکیده

هدف از این پژوهش واسنجی مدل CANEGRO/ DSSATبا استفاده از داده­های دو کشت از رقم CP57-614 در کشت و صنعت نیشکر امیرکبیر خوزستان و ارزیابی آن برای سطوح مختلف آبیاری است. طرح آزمایشی اجرا شده در سال­­های زراعی 85-86 و 94-95 در سه سطح آبیاری شامل دو سطح تنش آبی و یک سطح آبیاری کامل در سه تکرار در قالب طرح­ بلوک­های کامل تصادفی اجرا گردیده است. به­منظور دست­یابی به برخی ضرایب ورودی، ابتدا واسنجی مدل با روش GLUE انجام شد. مدل CANEGRO دارای 20 پارامتر ژنتیکی می­باشد که به­منظور کاهش تعداد آن­ها، پارامتریابی انجام شد. مقایسه پیش­بینی­ها و شبیه­سازی­های مدل نشان داد که راندمان مدل برای وزن خشک هوایی برابر با 69/0 تا 75/0،  وزن خشک ساقه برابر با 67/0 تا 7/0 و  ساکارز برابر با 18/0 تا 25/0 است. دقت مدل در پیش­بینی ساکارز نسبت به بقیه متغیرها کمتر بود که به سبب اندازه­گیری­های ساکارز در اواخر فصل است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Parameterization and Evaluation of the DSSAT-CANEGRO Model for Sugarcane CP57-614 in Khuzestan Climate Condition

نویسندگان [English]

  • Mahboobe Ghasemi 1
  • abdali naseri 2
  • Hadi Moazed 3
1 Ph.D. Student of Irrigation and Drainage, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Professor of Irrigation and Drainage, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Retired professor of Irrigation and Drainage, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

The purpose of this study was to calibrate and evaluate DSSAT-CANEGRO Modelusing field data from two datasets for cultivar CP57-614, in Khuzestan. The experimental plan was performed at three levels of irrigation water (full and deficit irrigation) with three replicates in a completely randomized block design during cultivation years of 85-86 and 94-95. First of all, model calibration was done to find out the important input parameters by GLUE method. DSSAT-CANEGRO Model consists of 20 Genetic parameters. In order to reduce some parameters, parameterization was conducted using field data. The comparison between predicted and measured data showed that the model efficiency was 0.69 to 0.75 for aerial dry mass, 0.67 to 0.7 for stalk dry mass and 0.18 to 0.25 for sucrose. The results indicated that the sucrose prediction by CANEGRO model is weak as compared to other parameters. This is due to measuring sucrose at the end of grown season.

کلیدواژه‌ها [English]

  • Aerial Dry Mass
  • Crop Modeling
  • Stalk Dry Mass
  • Sucrose
  • leaf area index
Bezuidenhout, C N. and Singels, A. (2007a). Operational forecasting of South African sugarcane production: Part 1. System description. Agric. Systems 92, no. 1 (January):23–38.

Bezuidenhout, C N. and Singels, A. (2007b). Operational forecasting of South African sugarcane production: Part 2. System evaluation. Agric. Systems 92, no. 1 (January):39–51.

Cheeroo-Nayamuth, F., CRobertson, M J., Wegener, M K. and Nayamuth, A. R. H. (2000). Using a simulation model to assess potential and attainable sugar cane yield in Mauritius. Field Crops Res. 66(3):225–243.

De Carvalho, A. L., De Souza, J. L., Almeida, A. C. D. S., Lyra, G. B., Lyra, G. B., Teodoro, I., and Santos., L. R. (2018). Sugarcane productivity simulation under different planting times by DSSAT/CANEGRO model in Alagoas, Brazil. Emirates Journal of Food and Agriculture.

Dias, H. B., and Sentelhas, P. C. (2017). Evaluation of three sugarcane simulation models and their ensemble for yield estimation in commercially managed fields. Field Crops Research, 213, 174-185.

Inman-Bamber, N. G. (1991). a growth model for sugarcane based on a simple carbon balance and the CERES-Maize water balance. S. Afr. J. Plant Soil 8(2):93–99.

Inman-Bamber, N. G., Bonnett, G. D., Spillman, M. F., Hewitt, M. L. and Xu., J. (2009). Source–sink differences in genotypes and water regimes influencing sucrose accumulation in sugarcane stalks. Crop Pasture Sci. 60:316–327.

Jones., C. A., Wegener., M. K., Russell., J. S., McLeod., I. M., and Williams., J. R. (1989). AUSCANE, Simulation of Australian sugarcane with EPIC. In Tech. Paper 29. Div. of Tropical Crops and Pastures. CSIRO, Canberra, Australia.

Liu., D. L. and Kingston., G. (1995). QCANE: A simulation model of sugarcane growth and sugar accumulation: QCANE. p. 25–29. In M.J. Robertson (ed.) Research and modeling approaches to assess sugarcane production opportunities and constraints. Workshop Proc., Univ. of Queensland, St. Lucia, Brisbane. 10–11 Nov. 1994. Univ. of Queensland, St. Lucia, Brisbane.

Marin., F. R. Jones., J. W., Royce. F. Suguitani, C. Jorge, L., Donzeli, J. Filho, P. W. and Nassif, D. S. P. (2011). Parameterization and evaluation of predictions of DSSAT/CANEGRO for Brazilian sugarcane. Agronomy Journal 103 (2): 304-315.

Marin., F. R. and Jones., J. W. (2014). Process-based simple model for simulating sugarcane growth and production. Scientia Agricola71(1), pp.1-16.

Marin., F. R, Thorburn, P. J. Nassif., D. S. and Costa., L. G. (2015). Sugarcane model intercomparison: Structural differences and uncertainties under current and potential future climates. Environmental Modelling & Software, 72: 372-386.

Martine., J. F. (2003). Modelisation de la production potentielle de la canne à sucre en zone tropicale, sous conditions thermiques et hydriques contrastées. Applications du modèle. Ph.D. thesis. Inst. Natl. Agronomique Paris-Grignon, Paris.

Mokhtaran, R. (2014). Dynamic study of freshwater and saltwater interface in irrigated lands of   sugarcane. Ph. D. dissertation, University of Chamran, Ahwaz. (In Farsi).

O’Leary., G. J. (2000). A review of three sugarcane simulation models with respect to their prediction of sucrose yield. Field Crops Res. 68, no. 2: 97–111.

Sinclair., T. R. Gilbert., R. A. Perdomo., R. E. Shine., J. M. Powell., G. and Montes., G. (2004). Sugarcane leaf area development under field conditions in Florida, USA. Field Crops Res. 88(2), (Agosto 10):171–178.

Singels., A. and Bezuidenhout., C. N. (2002). A new method of simulating dry matter partitioning in the CANEGRO sugarcane model. Field Crops Res. 78(2–3):151–164.

Singels., A.. Jones, M. and van den Berg., M. (2008). DSSAT v4.5 Canegro Sugarcane Plant Module Scientific Documentation. International Consortium for Sugarcane Modelling.

Soltani A, Hoogenboom G (2007) Assessing crop management options with crop simulation models based on generated weather data. Field Crops Research, 103(3), 198-207.

Villegas., F. D. Daza., O. H. Jones., J. W. and Royce. F. W. (2005). CASUPRO: An industry-driven sugarcane model. ASAE paper no. 053025. ASAE, St. Joseph, MI.

Zhao D, Yang R L (2015). Climate change and sugarcane production: potential impact and mitigation strategies. International Journal of Agronomy.