Presenting a New Method for Soil-moisture Estimation Using Optical Remotely-sensed Imagery

Document Type : Research Paper


1 PhD student of Irrigation & Drainage-Water Science faculty-Shahid Chamran University of Ahvaz-iran

2 Professor of Irrigation and Drainage Department water science faculty Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Professor of Irrigation and Drainage Department water science faculty, Shahid Chamran University of Ahvaz.Iran

4 Assisstant professor of GIS and RS , Geography faculty University of Tehran, Iran

5 Professor of Plants, Soils, and Climate.Agricuture Faculty Utah State University, Logan,USA


Optical remote sensing of earth surface processes commonly relies on the Red, Green, Blue (RGB), Near Infrared (NIR) and Shortwave Infrared (SWIR) electromagnetic bands. In soil-moisture estimation method using optical remotely-sensed imagery, by assuming a linear relationship between the Red-NIR reflectance, the line of bare soil (soil line) is established as the base and then moisture isoclines are assumed perpendicular to the soil line. This study is intended to show that this assumption is not consistent with the actual Red-NIR space geometry, which in many cases introduces soil moisture estimation errors. Therefore, a new mathematical transformation method was proposed to the original Red-NIR space followed by newly-defined soil moisture isolines. This new Transformed Red-NIR (TRN) model was compared with the conventional Red-NIR (CRN) model using data from Salman Farsi sugarcane field located in Khozestan province in southwestern of Iran. Twelve Landsat-8 satellite images were used during the sugarcane growing season. For validation of the remotely sensed data, ground reference soil moisture was measured at 22 locations at five different depths. Results of the proposed new method significantly improved accuracy of the Red-NIR approach to remote sensing of soil moisture.


Main Subjects

Amani, M., Parsian, S., MirMazloumi, S. M., & Aieneh, O. (2016). Two new soil moisture indices based on the NIR-red triangle space of Landsat-8 data. International Journal of Applied Earth Observation and Geoinformation, 50, 176-186.
Babaeian, E., Homaee, M., Montzka, C., Vereecken, H., Norouzi, A. A., & van Genuchten, M. T. (2016). Soil moisture prediction of bare soil profiles using diffuse spectral reflectance information and vadose zone flow modeling. Remote Sensing of Environment, 187, 218-229.
Carlson, T. (2007). An overview of the" triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors, 7(8), 1612-1629.
Carlson, T. N., Capehart, W. J., & Gillies, R. R. (1995). A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sensing of Environment, 54(2), 161-167.
Carlson, T. N., Gillies, R. R., & Perry, E. M. (1994). A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote sensing reviews, 9(1-2), 161-173.
Chen, N., He, Y., & Zhang, X. (2017). NIR-Red Spectra-Based Disaggregation of SMAP Soil Moisture to 250 m Resolution Based on OzNet in Southeastern Australia. Remote Sensing, 9(1), 51.
Das, N. N., & Mohanty, B. P. (2006). Root zone soil moisture assessment using remote sensing and vadose zone modeling. Vadose Zone Journal, 5(1), 296-307.
Ghulam, A., Li, Z. L., Qin, Q., Tong, Q., Wang, J., Kasimu, A., & Zhu, L. (2007). A method for canopy water content estimation for highly vegetated surfaces-shortwave infrared perpendicular water stress index. Science in China Series D: Earth Sciences, 50(9), 1359-1368.
Ghulam, A., Li, Z. L., Qin, Q., Yimit, H., & Wang, J. (2008). Estimating crop water stress with ETM+ NIR and SWIR data. Agricultural and Forest Meteorology, 148(11), 1679-1695.
Ghulam, A., Qin, Q., & Zhan, Z. (2007). Designing of the perpendicular drought index. Environmental Geology, 52(6), 1045-1052.
Jackson, R. D. (1983). Spectral indices in n-space. Remote Sensing of Environment, 13(5), 409-421.
Hernandez, J. M., Bar-Yosef, B., & Kafkafi, U. (1991). Effect of surface and subsurface drip fertigation on sweet corn rooting, uptake, dry matter production and yield. Irrigation Science, 12(3), 153-159.
Liu, F., Qin, Q., Chen, C., Feng, H., Zhang, N., & Chai, L. (2011, July). Designing an improved soil moisture index in the near-infrared and shortwave plane. In Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International (pp. 3074-3077). IEEE.
Liu, P. J., Zhang, L., Kurban, A., Chang, P., Li, L., & Polat Zhao, B. (1997). A method for monitoring soil water contents using satellite remote sensing. J. Remote Sens, 1(2), 135-138.
Mahmood, R., & Hubbard, K. G. (2007). Relationship between soil moisture of near surface and multiple depths of the root zone under heterogeneous land uses and varying hydroclimatic conditions. Hydrological Processes: An International Journal, 21(25), 3449-3462.
Mobasheri, M. R., & Amani, M. (2016). Soil moisture content assessment based on Landsat 8 red, near-infrared, and thermal channels. Journal of Applied Remote Sensing, 10(2), 026011.
Mohanty, B. P., Cosh, M. H., Lakshmi, V., & Montzka, C. (2017). Soil moisture remote sensing: State-of-the-science. Vadose Zone Journal, 16(1).
Moran, M. S., Clarke, T. R., Inoue, Y., & Vidal, A. (1994). Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote sensing of environment, 49(3), 246-263.
Nemani, R., Pierce, L., Running, S., & Goward, S. (1993). Developing satellite-derived estimates of surface moisture status. Journal of Applied Meteorology, 32(3), 548-557.
Ochsner, T. E., Cosh, M. H., Cuenca, R. H., Dorigo, W. A., Draper, C. S., Hagimoto, Y., ... & Larson, K. M. (2013). State of the art in large-scale soil moisture monitoring. Soil Science Society of America Journal, 77(6), 1888-1919.
Qin, Q., Jin, C., Zhang, N., & Yang, X. (2010, July). An two-dimensional spectral space based model for drought monitoring and its re-examination. In Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International (pp. 3869-3872). IEEE.
Rahimzadeh-Bajgiran, P., Berg, A. A., Champagne, C., & Omasa, K. (2013). Estimation of soil moisture using optical/thermal infrared remote sensing in the Canadian Prairies. ISPRS journal of photogrammetry and remote sensing, 83, 94-103.
Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric engineering and remote sensing, 43(12), 1541-1552.
Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., ... & Wendroth, O. (2008). Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review.  Vadose Zone Journal, 7(1), 358-389.
Sadeghi, M., Babaeian, E., Tuller, M., & Jones, S. B. (2017). The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote sensing of environment, 198, 52-68.
Sadeghi, M., Jones, S. B., & Philpot, W. D. (2015). A linear physically-based model for remote sensing of soil moisture using short wave infrared bands. Remote Sensing of Environment, 164, 66-76.
Shafian, S., & Maas, S. J. (2015). Index of soil moisture using raw Landsat image digital count data in Texas high plains. Remote Sensing, 7(3), 2352-2372.
Shafian, S. (2014). Estimation of soil moisture status in the Texas High Plains using remote sensing (Doctoral dissertation).
Sun, H. (2016). Two-stage trapezoid: A new interpretation of the land surface temperature and fractional vegetation coverage space. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(1), 336-346.
Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., Vrugt, J. A., & Hopmans, J. W. (2008). On the value of soil moisture measurements in vadose zone hydrology: A review. Water resources research, 44(4).
Walker, J. P., Willgoose, G. R., & Kalma, J. D. (2001). One-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: A simplified soil moisture model and field application. Journal of Hydrometeorology, 2(4), 356-373.
Yin, Z., Lei, T., Yan, Q., Chen, Z., & Dong, Y. (2013). A near-infrared reflectance sensor for soil surface moisture measurement. Computers and electronics in agriculture, 99, 101-107.
Zhan, Z., Qin, Q., Ghulan, A., & Wang, D. (2007). NIR-red spectral space based new method for soil moisture monitoring. Science in China Series D: Earth Sciences, 50(2), 283-289.
Zhang, D., Tang, R., Zhao, W., Tang, B., Wu, H., Shao, K., & Li, Z. L. (2014). Surface soil water content estimation from thermal remote sensing based on the temporal variation of land surface temperature. Remote Sensing, 6(4), 3170-3187
Zhang, H., Chen, H., Shen, S., & Zou, C. (2008, September). The application of Modified Perpendicular Drought Index (MPDI) method in drought remote sensing monitoring. In Remote Sensing and Modeling of Ecosystems for Sustainability V (Vol. 7083, p. 70831D). International Society for Optics and Photonics.
Zh. ZhiMing, Zh., QiMing. Q., Abduwasit. Gh., DongDong. W., (2007), NIR-red spectra space based new method for soil moisture monitoring, Science in China Series D Earth Sciences 50(2):283-289, DOI: 10.1007/s11430-007-2004-6