The effect of luteolin, seed exudate and salinity on the nod gene expression of R. meliloti using β-galactosidase activity assay

Document Type : Research Paper


1 1Department of Agronomy and Plant Breeding, University of Tehran

2 Department of Agronomy and Plant Breeding, University of Tehran

3 2Department of Soil Science, University of Tehran


Flavonoids play a crucial role as signal molecules in promoting the formation of nodules by symbiotic bacteria commonly known as rhizobia. Luteolin is one of the most important flavonoids, which release from seeds during the first 4 hours of imbibition. It also seems that high NaCl concentrations induce the nod genes the absence of flavonoid inducers. We studied the effect of luteolin, Seed exudate and salinity on the induction of nod genes in R. Meliloti carrying a plasmid with a translational fusion between R. Meliloti nodA and lacZ of Escherichia coli, and the expression activity was measured by β -galactosidase activity. The results showed that pretreatment of bacteria with luteolin and seed exudate increased the expression of the nodA gene, that the effect of seed exudate on gene expression was more than the effect of luteolin. The results also showed that high salinityو 300 and 400 mM led to the expression nod gene in the absence of flavonoids and when there is high NaCl and inducers simultaneously, the expression of nod gene was greater. It seems that, rhizobium use a possible mechanism to improve nodulation under stress conditions.Due to increasing salinity and synthetic fertilizers problem, it seems searching about salinity and symbiosis of rhizobium and legums is importan and necessary.


Main Subjects

Begum, A. A., Leibovitch, S., Migner, P. and Zhang, F. (2001). Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. Journal of Experimental Botany, 52, 1537–1543
Bernard, T., Pocard, J. A., Perroud, B. and Le Rudulier, D. (1986). Variations in response of salt stressed Rhizobium strains to betaines. Archivws of Microbiology, 143, 359–364.
Cerro, P. D., Pérez-Montaño, F., Gil-Serrano, A., López-Baena, F. J., Megías, M., Hungria, M., and Ollero, F. J. (2017). The Rhizobium tropici CIAT 899 NodD2 protein regulates the production of Nod factors under salt stress in a lavonoidindependent manner. Scientific RepoRts, 7, 1-10.
Chen, H. C., Feng, J., Hou, B. H., Li, F. Q., Li, Q. and Hong, G. F. (2005). Modulating DNA bending affects NodD-mediated transcriptional control in Rhizobium leguminosarum. Nucleic Acid Research, 33, 2540 – 8.
Debelle, F., Rosenberg, C., Vasse, J., Maillet, F., Martinez, E. and Denarie, J. (1986). Assignment of symbiotic developmental phenotypes to common and specific nodulation (nod) genetic loci of Rhizobium meliloti. Journal of Bacteriology, 168, 1075 – 86.
Ditta, G., Stanfield, S., Corbin, D. and Helinski, D. R. (1980). Broad host range cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proceedings of the National Academy of Sciences of USA, 77, 7347–7351.
Estevez, J., Soria-Díaz, M. E., Fernández de Córdoba, F., Morón, B., Manyani, H., Gil, A., Thomas-Oathes, J., van Brussel, A. A. N., Dardanelli, M. S., Sousa, C. and Megías, M. (2009). Different and new Nod factors produced by Rhizobium tropici CIAT899 following Na+stress. FEMS (Fed. Eur. Microbiol. Soc.) Microbiology Letters, 293, 220-231.
Gard, B., Dogra, R. C. and Sharma, P. K. (1999). High-efficiency transformation of Rhizobium leguminosarum by electroporation. ApplIied and Environment Microbiology, 65, 2802–2804.
Garg, B., Dogra, R. C. and Shama, P. K. (1999). High-efficiency transformation of Rhizobium leguminosarum by electroporation. Applied and Environmental Microbiology, 65, 2802 – 4.
Giraud, E., Moulin, L., Vallenet, D., Barbe, V., Cytryn, E., Avarre, J. C., Jaubert, M., Simon, D., Cartieaux, F., Prin, Y., Bena, G., Hannibal, L., Fardoux, J., Kojadinovic, M., Vuillet, L., Lajus, A., Cruveiller, S., Rouy, Z., Mangenot, S., Segurens, B., Dossat, C., Franck, W. L., Chang, W.S., Saunders, E., Bruce, D., Richardson, P., Normand, P., Dreyfus, B., Pignol, D., Stacey, G., Emerich, D., Verméglio, A., Médigue, C. and Sadowsky, M. (2007). Legumes symbioses: Absence of Nod genes in photosynthetic bradyrhizobia. Science, 316, 1307-1312.
Guasch-Vidal, B., Estévez, J., Dardanelli, M. S., Soria-Díaz, M. E., Fernández de Córdoba, F., Balog, .I. A., Manyani, H., Gil-Serrano, A., Thoma-Oates, J., Hensbergen, P. J., Deelder, A. M., Megías, M. and van Brussel, A. A. N. 2013. High NaCl concentrations induce the nod genes of Rhizobium tropici CIAT899 in the absence of flavonoid inducers. Molecular Plant-Microbe Interactions, 26(4), 451-460.
Hartwig, U. A., Maxwell, C. A., Joseph, C. M. and Phillips, D. A. (1990). Chrysoeriol and Luteolin Released from Alfalfa Seeds Induce nod Gene sinRhizobium meliloti. Plant Physiology, 92, 116-122.
Hayashi, M., Maeda, Y., Hashimoto, Y. and Murooka, Y. (2000). Efficient transformation of Mesorhizobium huakuii subsp. rengei and Rhizobium species. Journal of Bioscience Bioengineering, 89, 550–553.
Horvath, B., Kondorosi, E., John, M., Schmidt. J., Torok. I. and Gyorgypal, Z. (1986). Organization, structure and symbiotic function of Rhizobium meliloti nodulation genes determining host specificity for alfafa. Cell, 46, 335–43.
Jacobs, T. W., Egelhoff, T. T. and Long, S. R. (1985). Physical and genetic map of a Rhizobium meliloti nodulation gene region and nucleotide sequence of nodC. Journal of Bacteriology, 162, 469–76.
Jones, K. M., Kobayashi, H., Davies, B. W., Taga, M. E. and Walker, G. C. (2007). How symbionts invade plants: the Sinorhizobium Medicago model. Nature, 5, 619–33.
Kojima, K., Ybkoyama, T., Ohkama-Ohtsu, H. M. N., Saengkerdsub, S., Itakura, M., Mitsui, H., Minamisawa, K. and Arima, Y. (2012). Exploration of natural nod gene inducers for Mesorhizobium loti in seed and root exudates of Lotus Corniculatus. Soil Microorganisrns, 66(1), 12-21.
Laeremans, T. and Vanderleyden, J. (1998). Review: Infection and nodulation signaling in Rhizobium-Phaseolus vulgaris symbiosis. World Journal of Microbiology and Biotechnology, 14, 787-808.
Mabood, F. and Smith, D. L. (2005). Pre-incubation of Bradyrhizobium japonicum with jasmonates accelerates nodulation and nitrogen fixation in soybean (Glycine max) at optimal and suboptimal root zone temperatures. Physiologia Plantarum, 125, 311–323.
MacLean, A. M., Finan, T. M. and Sadowsky, M. J. (2007). Genomes of the symbiotic nitrogen-fixing bacteria of legumes. Plant Physiology, 144, 615 – 22.
Maj, D., Wielbo, J., Marek-Kozaczuk, M. and Skorupska, A. (2010). Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum. Microbiological Research, 165, 50- 60.
Masson-Boivin, C., Giraud, E., Perret, X. and Batut, J. (2009). Establishing nitrogen-fixing symbiosis with legumes: How many Rhizobium recipes. Trends in Microbiology, 17, 458-466.
Miller, J. H. (1972). Experiment in Molecular Genetics. Cold Spring Harbor.
Moron, B., Soria-Díaz, M. E., Ault, J., Verroios, G., Noreen, S., Rodríguez-Navarro, D. N., Gil-Serrano, A., Thomas-Oates, J., Megías, M. and Sousa, C. (2005). Low pH changes the profile of nodulation factors produced by Rhizobium tropici CIAT899. Chemical Biology, 12, 1029-1040.
Mulligan, J. T. and Long, S. R. (1985). Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proceedings of the National Academy of Sciences of USA, 82, 6609 – 13.
Pérez-Montaño, F., Guasch-Vidal, B., González-Barroso, S., López-Baena, F. J. and Cubo, T. (2011). Nodulation-gene-inducing flavonoids increase overall production of autoinducers and expression of N-acyl homoserine lactone synthesis genes in rhizobia. Research in Microbiology, 162, 715–723.
Schwedock, J. and Long, S. R. (1989). Nucleotide sequence and protein products of two new nodulation genes of Rhizobium meliloti, nodP and nodQ. Molecular Plant-Microbe Interactions, 2, 181–94.
Spaink, H. P. (2000). Root nodulation and infection factors produced by rhizobial bacteria. Annual Reveiw Microbiology, 54, 25 – 288.
Stachel, S. E., An, G., Flores, C. and Nesterl, W. E. (1985). A Tn3 lacZ transposon for the randomgeneration of β-galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium. The EMBO Journal, 4(4),.891-898.
Tambalo, D. D., Vanderlinde, E. M., Robinson, S., Halmillawewa, A., Hynes, M. F. and Yost, C. K. (2013). Legume seed exudates and Physcomitrella patens extracts influences warming behavior in Rhizobium leguminosarum. Canandian Journal of Microbiology, 60, 15–24.
Vincze, E. and Bowra, S. (2006). Transformation of Rhizobia with Broad-Host-Range Plasmids by Using a Freeze-Thaw Method. Applied and Environmental Microbiology, 5, 2290–2293.
Zaat, S. A.,Wijffelman, C. A., MuldersI, H. M., vanBrusse. L. A. A. N. and Lugtenberg, B. J. J. (1988). Root exudates of various host plants of Rhizobium leguminosarum contain different sets of inducers of Rhizobium nodulation genes. Plant Physiology, 86, 1298–303.
Zaat, S. A., Schripsema, J., Wijffelman, C. A., vanBrussel, A. A. N.and Lugtenberg, B. J. J. (1989). Analysis of the major inducers of the Rhizobium nodA promoter from Viciasativa root exudate and the iractivity with defferent nodD genes. Plant Molecular Biology, 13, 175–88.
Zhang, F. and Smith, D. L. (1996). Inoculation of soybean (Glycine max. (L.) Merr.) with genistein-preincubated Bradyrhizo-bium japonicum or genistein directly applied into soil increases soybean protein and dry matter yield under short season condition. Plant and Soil, 179, 233–41.
Zhang, F. and Smith, D. L. 2002. Interorganismal signaling in suboptimum nvironments: the legume–rhizobia symbiosis. Advances in Agronomy, 76, 125 – 61.