Isolation and identification of cyanobacteria from Kavir National Park hypersaline soils

Document Type : Research Paper


1 University of Tehran

2 University College of Agriculture and Natural Resources, University of Tehran

3 Ahzahra University


Cyanobacteria are a unique group of photoautotrophic bacteria that some of them due to their structural characteristics show a significant tolerance to salinity. These organisms play an important role in terrestrial environments, especially in arid and semi-arid region. In this study, soil cyanobacteria were isolated from the desert regions of Iran and then isolates resistant to hypersaline conditions identified. 40 soil samples were collected from the Kavir National Park. Samples were separated after culture in BG11 and ASN III (3.5, 5, 6 and 7% of NaCl) mediums and incubated under appropriate conditions of temperature and light and identified initially using morphological keys and then by molecular methods. Out of 40 sampling sites cyanobacteria were isolated only from four hypersaline sites. Twenty-seven morphotypes were identified in medium without sodium chloride that five strains belonging to two genera were able to grow in the presence of 3.5% sodium chloride. Among the five strains, three strains in 5% and two strains in 6% of sodium chloride grew. Only Phormidium autumnale 61et was able to tolerate 7% sodium chloride that was isolated from the site with 87.80 dS/m. The results showed that some isolated cyanobacteria from soils of Kavir National Park can grow in extreme conditions such as salinity stress and create a biologically active mass.


Main Subjects

Alwathnani, H. and Johansen, J.R. (2011). Cyanobacteria in soils from a Mojave Desert ecosystem. Monographs of the Western North American Naturalist, 5(1), 71–89.
Andersen, R. A. (2005) Algal Culturing Techniques. Elsevier Academic Press. California, USA.
Asadi, M., Dehghan, G., Zarrini, G. and Soltani, N. (2011). Taxonomic survey of cyanobacteria of Urmia Lake (NW Iran) and their adjacent ecosystems based on morphological and molecular methods. Rostaniha, 12(2), 153-163.
Bruno, L., Billi, D. and Albertano, P. (2005). Optimization of molecular techniques applied to the taxonomy of epilithic Leptolyngbya strains. Arch Hydrobiol Algological Studies, 117, 197-207.
Caroppo, C., Albertano, P., Bruno, L., Montinari, M., Rizzi, M., Vigliotta, G. and Pagliara, P. (2012). Identification and characterization of a new Halomicronema species (Cyanobacteria) isolated from the Mediterranean marine sponge Petrosia ficiformis (Porifera). Fottea, 12(2), 315–326.
Casamatta, D. A., Johansen, J. R., Vis, M. L. and Broadwater, S. T. (2005). Molecular and morphological characterization of ten polar and near–polar strains within the Oscillatoriales (Cyanobacteria). Journal of Phycology, 41(2), 421–438.
Chatchawan, T., Peerapornpisal, Y. and Komarek, J. (2011). Diversity of cyanobacteria in man–made solar saltern, Petchaburi Province, Thailand – a pilot study. Fottea, 11(1), 203–214.
Chen, L. Z., Li, D. H., Song, L. R., Hu, C. X., Wang, G. H. and Liu, Y. D. (2006a). Effects of salt stress on carbohydrate metabolism in desert soil alga Microcoleus vaginatus Gom. Journal of Integrative Plant Biology, 48(8), 914−919.
Chen, L. Z., Xie, Z. M., Hu, C. X., Li, Y. D., Wang, G.H. and Liu, Y. D. (2006b). Man-made desert algal crusts as affected by environmental factors in Inner Mongolia. China Journal Arid Environment, 67, 521-527.
Comte, K., Sabacka, M., Carre–Mlouka, A., Elster, J. and Komarek, J. (2007). Relationships between the Arctic and the Antarctic cyanobacteria; three Phormidium–like strains evaluated by a polyphasic approach.  FEMS  Microbiology Ecology, 59(2), 366–376.
Dadheech, P. K., Casamatta, D. A., Casper, P. and Krienitz, L. (2013). Phormidium etoshii sp. nov. (Oscillatoriales, Cyanobacteria) described from the Etosha Pan, Namibia, based on morphological, molecular and ecological features. Fottea, 13(2), 235–244.
Dennis, P. P. and Shimmin, L. C. (1997). Evolutionary divergence and salinity–mediated selection in halophilic archaea. Microbiology and Molecular Biology Reviews, 61(1), 90–104.
Deshmukh, P. P., Wagh, G. N., Nag, B. B.  S. P., Suri, R. K. and Thaware, R. R. (2010). Study of cyanobacterial diversity in different ecological niches using molecular techniques. Asiatic Journal of Biotechnology Resources, 03, 241-247.
Dorador, C., Vila, I., Imhoff, J. F. and Witzel, K. P. (2008). Cyanobacterial diversity in Salar de Huasco, a high altitude saline wetland in northern Chile: an example of geographical dispersion. FEMS  Microbiology Ecology, 64(3), 419-32.
Fernandes, T. A., Iyer, V. and Apte, S. K. (1993). Differential responses of nitrogen-fixing cyanobacteria to salinity and osmotic stresses. Applied and Environmental Microbiology, 59(3), 899-904.
Ferris, M. J. and Hirsch, C. F. (1991). Method for isolation and purification of cyanobacteria. Applied and Environmental Microbiology, 57(5), 1448-1452.
Gachon, C. (2013). (
Garcia-Pichel, F., Lopez-Cortes, A. and Nubel, U. (2001). Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Applied and Environmental Microbiology, 67, 1902–1910.
Gilmour, D. (1990) Halotolerant and halophilic microorganisms. In Edwards, C. (Ed.) Microbiology of extreme environments. Open University Press. (pp. 147–177). Milton Keynes, UK.
Issa, O. M., Defarge, C., Le Bissonnais, Y., Marin, B, Duval, O., Bruand, A., D’Acqui, L., Nordenberg, S. and Annerman, M. (2007). Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant Soil, 290(1–2), 209-219.
Javor, B. (1989) Hypersaline environments. Microbiology and Biogeochemistry. Springer Verlag, Berlin.
Khayer, K. A., Begum, M. F. A., Ali M. M., Mondal, M. A. and Akther, Q. Y. (2008). Ecology of cyanobacteria in some selected soils. Journal of Agroforestry and Environment, 2(1), 1-6.
Khosroshahi, M., Kalirad, A. and Hosseini Marandi H. (2011a). Comparison of the desert kingdom of climate and tectonic of Iran. Veld and Desert Research of Iran, 18(2), 336-352.
Khosroshahi, M., Mahmoudi, F. and Kashki, M. T. (2011b). Iranian desert areas with emphasis on the role of geological factors affecting their formation. Earth Sciences, 20(80), 15-22.
Kirkwood, A. E., Buchheim, J. A., Buchheim, M. A. and Henley, W. J. (2008). Cyanobacterial Diversity and Halotolerance in a Variable Hypersaline Environment. Microbial Ecology, 55, 453.465.
Komarek, J. (2010). Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 639, 245–259.
Komarek, J. and Mares, J. (2012). An update to modern taxonomy (2011) of freshwater planktic heterocytous cyanobacteria. Hydrobiologia, 698, 327–351.
Komarek, J. and Anagnostidis, K. (1989). Modern approach to the classification system of cyanophytes 4 Nostocales. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 82, 247-345.
Komarek, J. and Anagnostidis, K. (1998) Cyanoprokaryota 1. Teil: Chroococcales. In Ettl, H., Gärtner, G., Heyni G.H. and Mollenhauer, D. (Eds.) Süsswasserflora von Mitteleuropa 19/1, Gustav Fischer Jena–Stuttgart–Lübeck–Ulm. (pp. 548).
Komarek, J. and Anagnostidis, K. (2005) Cyano-prokaryota 2. Teil: Oscillatoriales. In Büdel, B., Gärtner, G., krienitz, L. and Schagerl, M. (Eds) Süsswasserflora von Mitteleuropa 19/2, Elsevier GmbH. (pp. 760). München.
Kulasooriya, S. A. (2011). Cyanobacteria: Pioneers of Planet Earth. Ceylon Journal of Science (Bio. Sci.,) 40 (2), 71-88.
Lestan, D. and Lamar, R. T. (1996). Development of fungal inocula for bioaugmentation of contaminated soils. Applied and Environmental Microbiology, 62, 2045-2052.
Maqubela, M. P., Mnkeni, P. N. S., Issa, M., Pardo, M. T. and Dacqui, L. P. (2008). Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant Soil, 315(1), 79-92.
Marquardt, J. and Palinska, K. A. (2007). Genotypic and phenotypic diversity of cyanobacteria assigned to the genus Phormidium (Oscillatoriales) from different habitats and geographical sites. Archives of Microbiology, 187, 397–413.
Martineau, E., Wood, S. A., Miller, M. R., Jungblut, A. D., Hawes, I., Webster-Brown, J. and Packer, M. A. (2013). Characterization of Antarctic cyanobacteria and comparison with New Zealand strains. Hydrobiologia, 711,139–154.
Montoya, H. (2009). Algal and cyanobacterial saline biofilms of the Grande Coastal Lagoon, Lima, Peru. Natural Resources and Environmental Issues, 15(23), 127–134.
Montoya, H. T. and Golubic, S. (1991). Morphological variability in natural populations of mat forming cyanobacteria in the salines of Huacho, Lima, Peru. Algological Studies, 64, 423–441.
Muhlsteinova, R., Johansen, J. R., Pietrasiak, N., Martin, M. P., Osorio-Santos, K. and Warren, S. D. (2014). Polyphasic characterization of Trichocoleus desertorum sp. nov. (Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus Trichocoleus. Phytotaxa, 163 (5), 241–261.
Nayak, S. and Prasanna, R. (2007). Soil pH and its role in cyanobacterial abundance and diversity in rice field soils. Applied Ecology and Environmental Research, 5(2), 103-113.
Nongbri, B. B. and Syiem, M. B. (2012). Diversity analysis and molecular typing of cyanobacteria isolated from various ecological niches in the state of Meghalaya, North-East India. Environmental Engineering Research in December, 17(S1), S21-S26.
Oren, A. (2000) Salt and brines. In Whitton, B.A. and Potts, M. (Eds), The ecology of cyanobacteria: Their diversity in time and space, Kluwer Academic Publishers. (pp. 281-306). Dordrecht.
Pawar, S. T. and Puranik, P. R. (2014). C-phycocyanin production by halotolerant cyanobacteria. Phykos, 44(1), 25-32.
Pramanik, A., Sundararaman, M., Das, S. and Mukherjee, J. (2011). Isolation and characterization of cyanobacteria possessing antimicrobial activity from the Sundarbans, the World’s largest tidal mangrove forest. Journal of Phycology, 47(4), 731-743.
Prasanna, R., Saxena, A. K., Jaiswal, P. and Nayak, S. (2006). Development of Alternative Support System for Viable Count of Cyanobacteria by Most Probable Number Method. Folia Microbiology, 51 (5), 455-458.
Rajaniemi, P., Hrouzek, P., Kastovska, K., Willame, R., Rantala, A., Hoffmann, L., Komarek, J. and Sivonen, K. (2005). Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria. International Journal of Systematic and Evolutionary Microbiology, 55, 11-26.
Sciuto, K., Andreoli, C., Rascio N. and Moro I. (2012). Polyphasic approach and typification of selected Phormidium strains (Cyanobacteria). Cladistics, 28(4), 357-374.
Stackebrandt, E. and Gobel, U. B. (1994). Taxonomic note: a place for DNA-RNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology, 44, 846-849.
Strunecky, O., Komrek, J. and Elster, J. (2012). Biogeography of Phormidium autumnale (Oscillatoriales, Cyanobacteria) in western and central Spitsbergen. Polish Polar Research, 33(4), 369-382.
Sussman, M., Bourne, D. G. and Willis, B. L. (2006). A single cyanobacterial ribotype is associated with both red and black bands on diseased corals from Palau. Diseases of Aquatic Organisms, 69, 111-118.
Tamura, K., Dudley, J., Nei, M. and Kunars, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596-9.
Weaver, R.W. (2008). Methods of soil analysis. Part 2. Soil Science Society of America. Wisconsiv, USA.