Ashraf, M., Loftis, J. C., & Hubbard, K. G. (1997). Application of geostatistics to evaluate partial weather station networks. Agricultural and forest meteorology, 84(3), 255-271.
Carrega, P. (1995). A method for the reconstruction of mountain air temperatures with automatic cartographic applications. Theoretical and applied climatology, 52(1-2), 69-84.
Coulibaly, P., & Evora, N. D. (2007). Comparison of neural network methods for infilling missing daily weather records. Journal of hydrology, 341(1), 27-41.
Demyanov, V., Kanevsky, M., Chernov, S., Savelieva, E., & Timonin, V. (1998). Neural network residual kriging application for climatic data. Journal of Geographic Information and Decision Analysis, 2(2), 215-232.
Di Piazza, A., Conti, F. L., Noto, L. V., Viola, F., & La Loggia, G. (2011). Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. International Journal of Applied Earth Observation and Geoinformation, 13(3), 396-408.
Khalil, M., Panu, U. S., & Lennox, W. C. (2001). Groups and neural networks based streamflow data infilling procedures. Journal of Hydrology, 241(3), 153-176.
Khalili A (1991) Integrated Water Plan of Iran, Jamab Consulting Engineering Co., The Ministry of Energy, Tehran, 111-122. (In Farsi)
Henn, B., Raleigh, M. S., Fisher, A., & Lundquist, J. D. (2013). A comparison of methods for filling gaps in hourly near-surface air temperature data. Journal of Hydrometeorology, 14(3), 929-945.
Khorshiddoust, A. M., Nassaji, Z. M., and Ghermez, C. B. (2012). Time Series Reconstruction of Daily Maximum and Minimum Temperature using Nearest Neighborhood and Artificial Neural Network Techniques (Case Study: West of Tehran Province). Geographical Space, 12 (38), 197-214. (In Farsi)
Kim, J. W., & Pachepsky, Y. A. (2010). Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation. Journal of hydrology, 394(3), 305-314.
Mileva-Boshkoska, B., & Stankovski, M. (2007). Prediction of missing data for ozone concentrations using support vector machines and radial basis neural networks. Informatica, 31(4).
Mwale, F. D., Adeloye, A. J., & Rustum, R. (2012). Infilling of missing rainfall and streamflow data in the Shire River basin, Malawi–A self organizing map approach. Physics and Chemistry of the Earth, Parts A/B/C, 50, 34-43.
Teegavarapu, R. S., & Chandramouli, V. (2005). Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records. Journal of Hydrology, 312(1), 191-206.
Wagner, P. D., Fiener, P., Wilken, F., Kumar, S., & Schneider, K. (2012). Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. Journal of Hydrology, 464, 388-400.
Xia, Y., Fabian, P., Stohl, A., & Winterhalter, M. (1999). Forest climatology: estimation of missing values for Bavaria, Germany. Agricultural and Forest Meteorology, 96(1), 131-144.
Yozgatligil, C., Aslan, S., Iyigun, C., & Batmaz, I. (2013). Comparison of missing value imputation methods in time series: the case of Turkish meteorological data. Theoretical and applied climatology, 112(1-2), 143-167.
You, J., Hubbard, K. G., & Goddard, S. (2008). Comparison of methods for spatially estimating station temperatures in a quality control system. International Journal of Climatology, 28(6), 777-787.