Investigation of Dynamic Pressure of Vertical and Circular Free Water Jets on Rough Surfaces with Variable Angles

Document Type : Research Paper



The security and stability of dams for flood passing through the spillway should be provided. So, kinetic energy of flow over large spillway must be dissipated. One of the energy dissipation structures at downstream dams, are plunging pools. The aim of this paper is to investigate dynamic pressure that is created by the impact of a series of rounded non-submerged jets on a flat plate with the roughness height of 0.8 cm in the angles of the impact of 30, 60 and 90 degrees. This research uses sensors to measure the instantaneous pressure (Pressure transducer) with the ability to record and store the dynamic pressure oscillation of water jet. The results showed that increasing the drop height, average coefficient of dynamic pressure decreases. The extreme dynamic pressures coefficient increased with increase fall height. The mean coefficient of dynamic pressure increases with increasing discharge. As the angle of the impact jet decreases, the dynamic pressures reduce. Also, the roughness increases the dynamic pressure up to 70% in the test interval.


Main Subjects

Bollaert, E. and Schleiss, A. (2003(a)). Scour of rock due to the impact of plunging high velocity jets, Part I: A state-of-the-art review. Journal of Hydraulic Research, 41(5), 451-464.
Bollaert, E. and Schleiss, A. (2003(b)). Scour of rock due to the impact of plunging high velocity jets, Part II: Experimental results of dynamic pressures at pool bottoms and in one-and two-dimensional closed end rock joints. Journal of Hydraulic Research, 41(5), 465-480.
Castillo, L., Puertas, J., and Dolz, J. (1999). Discussion: Pressure fluctuations on plunge pool floors (Ervine, D. A., Falvey, H. T. and Withers, W.). Journal of Hydraulic Research, 37(2), 272-277.
Castillo, L., Puertas, J. and Dolz, J. (2004). Discussion: Scour of rock due to the impact of plunging high velocity jets, Part I: A state-of-the art review. (Bollaert, E. and Schleiss, A.). Journal of Hydraulic Research, 41(5), 451-464.
Castillo, L. and Luis, G. (2006). Aerated jets and pressure fluctuation in plunge pools. Proceeding the 7th International Conference on Hydro Science and Engineering (ICHE), 10–13 Sep, Drexel University, Philadelphia, USA.
Castillo, L. (2007). Pressure characterization of undeveloped and developed jets in shallow and deep pool. Proceeding 32nd Congress of IAHR, the International Association of Hydraulic Engineering and Research, Venice, Italy, 2, 645-655.
Ervine, D. A. and Falavey, H. T. (1987). Behavior of turbulent jets in atmosphere and in plunge pools. Proceeding of the Institution of the Civil Engineering, 83(1), 295-314.
Ervine, D. A., Falavey, H. T. and Withers, W. (1997). Pressure fluctuation on plunge pool floors. Journal of Hydraulic Research, 35(2), 491-513.
Hartung, F. and Häusler, E. (1973). Scours, stilling basins and downstream protection under free overfall jets at dams. Proceedings of the 11th Congress on Large Dams, Madrid, pp. 39–56.
Kerman Nejad, J., Fathi-Moghadam, M., Lashkarara, B. and Haghighipour, S. (2011). Dynamic pressure of Filip bucket jet. World Applied Sciences Journal, 12(8), 1165-1171.
Liu, P., Gao, J., Li, Z. and Li, Y. (1997). Mechanism of energy dissipation and hydraulic design for plunge pools downstream of large dams. The 27th Congress Energy and Water Sustainable Research, ASCE, pp. 417-422.
Peter, J. R. (1994). Force and pressure measurements in spillway plunge pools. The National Conference of Hydraulic Engineering, ASCE, pp. 553-557.
Salemnia, A., Fathi-Moghadam, M. and Haghighipour, S. (2014). Effect of nozzle diameter and falling height on the dynamic pressure coefficient of vertical free water jets. Journal of Water and Soil Science, 24(4), 185-195. (In Farsi)