ارزیابی مدل AquaCrop در شبیه‌سازی عملکرد ذرت علوفه‌ای در طول جویچه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پردیس کشاورزی و منابع طبیعی دانشگاه تهران

2 عضو هیئت علمی گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

چکیده

مدل‌های رشد و نمو گیاهان زراعی ازجمله مدل AquaCrop از ابزارهای بسیار مهم برای تصمیم‌گیری و پیش‌بینی عملکرد گیاهان هستند. هدف این تحقیق، ارزیابی مدل AquaCrop در شبیه‌سازی عملکرد بیوماس و بلال ذرت علوفه‌ای در طول جویچه بود. چهار تیمار بر اساس تأمین نیاز آبی گیاه در انتهای جویچه (به ترتیب تیمارهای آبیاری کامل، در حد 75، 50 و 25 درصد آبیاری در انتهای جویچه) برای واسنجی و صحت‌سنجی مدل (تیمار آبیاری کامل برای واسنجی و تیمارهای کم‌آبیاری برای صحت‌سنجی) موردبررسی قرار گرفت. تیمار آبیاری کامل کمترین ضریب تغییرات عملکرد بیوماس و بلال ذرت علوفه‌ای مشاهده‌شده (به ترتیب 9 و 1/12 درصد) و شبیه‌سازی‌شده (به ترتیب 5/6 و 8/6 درصد) را داشت. شاخص‌های RMSE و NRMSE برای تخمین عملکرد بیوماس توسط مدل به ترتیب 6/1 تن بر هکتار و 1/10 درصد در مرحله واسنجی و 5/1 تن بر هکتار و 9/11 درصد در مرحله صحت‌سنجی به دست آمد. نتایج این تحقیق نشان داد که می‌توان از مدل AquaCrop برای شبیه‌سازی عملکرد بیوماس ذرت علوفه‌ای در طول جویچه استفاده نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of AquaCrop model for simulating forage maize yield along the furrow

نویسندگان [English]

  • Ibrahim Vatankhah 1
  • Hamed Ibrahimian 2
1
2
چکیده [English]

The growth and development of crop models such as AquaCrop model is the most important tools for decision-making and predicting crop yields. The aim of this research was to assess AquaCrop model for simulating spatial variability of forage maize yield along the furrow. Four treatments for calibration and validation of the model were investigated based on the percentage of supplied crop water requirement at the end of furrow (100, 75, 50 and 25 percent of full irrigation at the end of furrow). Full irrigation and deficit irrigation treatments were considered for model calibration and validation, respectively.  The full irrigation treatment had the lowest coefficient of variation for observed forage maize biomass and crop yield (9.0 and 12.1 %, respectively) and simulated forage maize biomass and crop yield (6.5 and 6.8 % respectively). Indicators of RMSE and NRMSE for simulation of maize biomass were 1.6 ton/ha and 10.1 % in the calibration stage and 1.5 ton/ha and 11.9 % in the validation stage, respectively. The results of this study indicated that the AquaCrop model can be applied for simulation of forage maize biomass along the furrow.

کلیدواژه‌ها [English]

  • Deficit irrigation
  • Furrow Irrigation
  • simulation
  • Uniformity
Abedinpour, M., Sarangi, A., Rajput, T.B.S., Singh, M., Pathak, H. and Ahmad, T. (2012) Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agricultural Water Management, 110, 55–66.
Andarzian, B., Bannayan, M., Steduto, P., Mazraeh, H., Barati, M. E., Barati, M. A. and Rahnama, A. (2011). Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran.  Agricultural Water Management, 100(1), 1-8.‌
Ahmadi, S. H., Mosallaeepour, E., Kamgar-Haghighi. A. A. andSepaskhah, A. R. (2015) Modeling Maize Yield and Soil Water Content with AquaCrop under Full and Deficit Irrigation Managements. Water Resources Management, 29(8), 2837-2853.‌
Boogaard, H.L., Van Diepen, C.A., Rotter, R.P., Cabrera, J.M.C.A. and Van Laar, H.H. (1998). WOFOST 7.1; user's guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5 (No. 52). SC-DLO.
Garcia-Vila, M. and Fereres, E. (2012) Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. European Journal of Agronomy, 36,21–31
Gebreselassie, Y., Ayana, M. and Tadele, K. (2015). Field experimentation based simulation of yield response of maize crop to deficit irrigation using AquaCrop model, Arba Minch, Ethiopia. African Journal of Agricultural Research, 10(4), 269-280
Gillies, M. H., Smith, R. J. and Raine, S. R. (2007). “Accounting for temporal inflow variation in the inverse solution for infiltration in surface irrigation.” Irrigation Science, 25(2), 87-97.
Heng, L.K., Hsiao, T.C., Evett, S., Howell, T. and Steduto, P. (2009). Validating the FAO AquaCropModel for Irrigated and Water Deficient Field Maize. Agronomy Journal, 101: 488–498.
Igbadun, H.E., Baanda, A.S., Tarimo, A.K.P.R. and Mahoo, H.F. (2008). Effects of deficit irrigationscheduling on yields and soil water balance of irrigated maize. Irrigation Science, 27, 11–23.
Jamison, P.D., Porter, J.R. and Wilson, D.R. (1991). A test of computer simulation model ARC-WHEAT1 on wheat cropsgrown in New Zealand. Field Crops Research, 27, 337-350.
Katerji, N., Campi, P. and Mastrorilli, M. (2013). Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agricultural Water Management, 130, 14–26.
Kroes, J.G. and Van Dam, J.C. (2008). Refrence manual SWAP version 3.2. Alterra green world Research. Wagennigen. Report 1649. Avaiabel at: http://www.swap. Alterra.nl.
Mebane, V.J., Day, R.L., Hamlett, J.L.,Watson, J.E. and Roth, G.W. (2013). Validating the FAO AquaCrop model for rain-fed maize in Pennsylvania. Agronomy Journal, 105,419–427.
Paredes, P., de Melo-Abreu, J.P., Alves, I., Pereira, L.S. (2014). Assessing the performance of the FAO AquaCrop model to estimate maize yields and water use under full and deficit irrigation with focus on model parameterization. Agricultural Water Management, 144, 81–97.
Raes, D., Steduto, P., Hsiao, T.C. and Freres, E. (2012). Refrence manual AquaCrop, FAO, land and water division, Rome Italy.
Raes, D., Steduto, P., Hsiao, T.C. and Fereres, E. (2009). AquaCrop. The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal, 101, 438-447.
Sepaskhah, A. R., Bazafshan, A. R. and Shirmohammadi - Aliakbbarian, Z. (2006). Development and evaluation of model for yield production of wheat, maize and sugarbeet under water and salt stresses. Biosystems Enginerring. 93(2), 139-152.
Smith, M. (1992). CROPWAT: A computer program for irrigation planning and management (No. 46). Food and Agriculture Organization, Rome, Italy.
Stockle, C.O., Matrin, S.A. and Campbell, G.S. (1994). Crop syst, acroping system simulation moel: water/ nitrogen budget crop yield. Agricultural systems, 46, 335-359.
Stricevic, R., Dzeletovic, Z., Djurovic, N. and Cosic, M. (2014). Application of the AquaCrop model to simulate the biomass of Miscanthus x giganteus under different nutrient supply conditions." GCB Bioenergy, doi 10.111/gcbb. 12206.
Todorovic, M., Albrizio, R., Zivotic, L., Abi, S., Stockle, C. and Steduto, P. (2009). Asswssment of AQUACROP, cropsyst, and wofost models in the simulation of sunflower growth under different water regimes. Agronomy Journal, 101, 509-521.
Zeleke, K.T., Luckett, D. and Cowley, R. (2011). Calibration and testing of the FAO AquaCrop model for canola. Agronomy Journal, 103,1610–1618.
Ziaii, G.; Babazadeh, H.; Abbasi, F.; and Kaveh, F. (2015). Evaluation of the AquaCrop and CERES-Maize Models in Assessment of Soil Water Balance and Maize Yield. Iranian Journal of Soil and Water Research, 45(4), 369-518. (In Farsi)
van Dam, J.C., Huygen, J., Wesseling, J.G., Feddes, R.A., Kabat, P., van Walsum, P.E.V., Groenendijk, P. and van Diepen, C.A. (1997). Theory of SWAP Version 2.0, Report #71. Department Water Resources, Wageningen Agricultural University, 167 pp.