اثر ابعاد سلولی مدل‏های ارتفاعی رقومی بر متوسط شمارة منحنی به‌دست‌آمده از روش مبتنی بر تئوری مازاد رطوبت اشباع (روش WI-CN)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری سازه ‏های آبی گروه مهندسی آبیاری و آبادانی دانشکدة مهندسی کشاورزی و فناوری دانشگاه تهران

2 دانشیار گروه مهندسی آب دانشکدة فنی و مهندسی دانشگاه بین‏المللی امام خمینی(ره) قزوین

3 دانشیار گروه مهندسی آبیاری و آبادانی دانشکدة مهندسی کشاورزی و فناوری دانشگاه تهران

چکیده

هدف این تحقیق بررسی اثر توان تفکیک مدل‏های ارتفاعی رقومی (DEMs) بر مقادیر شمارة منحنی به‌دست‌آمده از روش WI-CN بود. این روش نوین به علت استفاده از مفاهیم مازاد رطوبت مدل نیمه‌توزیعی TOPMODEL به شاخص توپوگرافی و متعاقب آن مقیاس DEM استفاده‌شده وابستگی زیادی دارد. نتایج کاربرد این روش در حوضة آبریز کسیلیان به ازای ابعاد سلولی مختلف حاکی از آن بود که متوسط شمارة منحنی حوضة به‌دست‌آمده از روش مزبور در ابعاد سلولی 50 متر در حدود 8/59 و در ابعاد سلولی 300 متر در حدود 8/71 است و این بدان معناست که اختلاف بین روش WI-CN و روش‏های متداول در برآورد CN با کاهش توان تفکیک DEM (بزرگ‌شدن ابعاد سلولی) افزایش می‌یابد. مثلاً، حداکثر اختلاف بین روش WI-CN و روش‌های متداول در برآورد شمارة منحنی حوضه با استفاده از DEM با ابعاد 50 متر 3/8 درصد و در صورت استفاده از DEM با ابعاد 300 متر 9/29 درصد است. بنابراین، با توجه به افزایش اختلاف بین روش‏های مذکور در اثر افزایش ابعاد سلولی باید هنگام استفاده از روش‌های مبتنی بر رطوبت مازاد اشباع برای استخراج نقشه‌های رستری CN، به‌خصوص در حوضه‏های فاقد آمار، دقت لازم به عمل آید و تعیین بهینة آن بر اساس توان تفکیک داده‌ها صورت پذیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

DEMs Resolution Effect on SCS Curve Number Derived through WI_CN Method Based on Saturation Excess Concept.

نویسندگان [English]

  • Asghar Azizian 1
  • Alireza Shokoohi 2
  • Ebrahim Amiri Tokaldany 3
1 Postgraduate Student in water structures, Tehran University, Karaj, Iran
2 Associate Professor, Water Engineering Dept., Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
3 Associate Professor, Irrigation and Reclamation Dept., Faculty of Agriculture and Technology, Tehran University, Karaj, Iran
چکیده [English]

The effects of DEM resolution on the curve number values as. Based on WI_CN method is addressed in the present research. This method, due to a use of TOPMODEL’s excesses saturation concept, is considerably dependent on the topographic index and subsequently on DEM cell sizes. The results of WI_CN method application in the Kasilian watershed for different DEM cell sizes indicated that the watershed averaged curve number in DEMs with resolutions of 50 and 300 meters   amount to 59.8 and 71.8, respectively, which means when DEM resolution gets coarser the difference between WI_CN method and common methods (derived CN using GIS and RS techniques) increases. For instance the maximum differences observed between the two methods (in 50 and 300 meter cell sizes) are 8.3% and 29.9%, respectively. Therefore, when making use of the saturation excess based methods for deriving curve number raster maps, especially in ungauged watersheds, DEM resolution effects should be defined with respect to data resolution.

کلیدواژه‌ها [English]

  • DEM Resolution
  • SCS Curve Number
  • WI_CN method
  • Semi distributed Model: TOPMODEL
Arnold, J. G., Williams, J. R., Srinivasan, R., and King, K. W. (1996). ″SWAT: Soil and Water Assessment Tool″, USDA-ARS. Soil and Water Research Laboratory. Temple. TX.
Azizian, A., Amiri, E., and Shokoohi, A. R. (2013). ″Effect of DEM Resolution on Topographic Index and Runoff Simulation in Semi Distributed Model: Topmodel″, Water Research Journal, 1(1), 17-26. (In Farsi)
Azizian, A. and Shokoohi, A. R. (2014). ″Development of a new method for estimation of curve number based on Saturation Excess Concept″, Iran-Water Resources Research, 11(1), 20-43. (In Farsi)
Beven, K. J. (1997). ″TOPMODEL: a critique″, Hydrological Processes, 11, 1069-1085.
Beven, K. J. and Kirkby, M. J. (1979). ″A physically based, variable contributing area model of basin hydrology″, Hydrological Sciences Bulletin, 24, 43-69.
Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R. (1984). ″A statistical exploration of the relationships of soil mixture characteristics to the physical properties of soils″, Water Resources. Research, 20, 682-690.
Hjelmfelt, A. T. (1980). ″Curve number procedure as infiltration method″, Journal of Hydrology, 106, 1107-1111.
Kansas, L. (1993). ″Simulating the Variable Source Area Concept of Stream flow Generation with the Watershed Model TOPMODEL, U.S. Geological Survey, Water Resources Investigations Report, 36.
Mishra, K. S. and Singh, P. V. (1999). ″Another look at SCS-CN Method″, Journal of Hydrologic Engineering, ASCE,4(3), 257-264.
Pradahan, N. R., Ogden, F. R., Tachikawa, Y., and Takara, K. (2008). ″Scaling of slope, upslope area, and soil water deficit: Implications for transferability and regionalization in topographic index modeling″, Water Resources Research, 44, 12-21.
Quinn, P. F., Beven, K. J., and Lamb, R. (1995). ″The ln[a/tan β] index :How to calculate it and how to use it within the TOPMODEL framework″, Hydrological Processes, 9, 161-182.
Rawls, W. J., Ahuja, L. R., Brakensiek, D. L., and Shirmohammadi, A. (1993). Infiltration and soil water movement. Handbook of Hydrology. (ed. by D. R. Maidment). New York: McGraw-Hill.
Soil Conservation Service (SCS). (1986). ″Urban hydrology for small watersheds″, Technical Release55, Springfield, USDA.
Steenhuis, T. S., Winchell, M., Rossing, J., Zollweg, J. A., and Walter, M. F. (1995). ″SCS Runoff Equation Revisited for Variable-Source Runoff Areas″, ASCE Journal of Irrigation and Drainage. Engineering, 121(3), 234-238.
Steve, W., Lyon, M., Todd, W., Pierre, G. M., and Tammo, S. S. (2004). ″Using a Topographic Index to Distribute Variable Source Area Runoff Predicted with the SCS Curve-number Equation″, Hydrological Processes, 18 (15), 2757-2771.
Tarboton, D. G. (1991). ″On the extraction of channel networks from digital elevation data″, Hydrological Processes, 5(1), 81-100.
Williams, J. R. (1995). ″The EPIC model. In: Singh, V.P. (Ed.), Computer Models of Watershed Hydrology″, Water Resources Publications (909-1000).
Wolock, D. M. and Price, C. V. (1994). ″Effects of digital Elevation model map scale and data resolution on a topography-based watershed model″, Water Resources Research, 30, 3041-3052.
Woodward, D. E., Hawkins, R. H., Jiang, R., Hjelmfelt, A. T., Mullem, J. A., and Quan, Q. D. (2003). ″Runoff Curve Number Method: Examination of the Initial Abstraction ratio″, In: Proc of the World Water & Environmental Resources Congress and Related Symposia. American Society of Civil Engineering, Washington DC.
Yaghobzade, M. (2008). ″Determination of SCS curve number using GIS and RS techniques, Msc.  thesis, Bahonar University, Kerman. (In Farsi)
Young, R. A., Onstad, C. A., Bosch, D. D., and Anderson, W. P. (1987). ″AGNPS, Agricultural Non-Point Source Pollution Model: A Watershed Analysis Tool″, USDA Conservation Report 35.USDA-ARS, Washington DC.
Zhan, X. and Huang, M. (2004). ″ArcCN-Runoff: an ArcGIS tool for generating curve number and runoff maps″, Environmental Modelling & Software, 19(10), 875-879.