Ahmadian, K., Jalilian, J., & Pirzad, A. (2021). Nano-fertilizers improved drought tolerance in wheat under deficit irrigation.
Agricultural Water Management, 244, 106544.
https://doi.org/10.1016/j.agwat.2020.106544
Ahmed, M., Khan, S., Irfan, M., Aslam, M. A., Shabbir, G., Ahmad, S., & Adnan, M. (2018). Effect of phosphorus on root signaling of wheat under different water regimes. In
Global Wheat Production (pp. 1-29). IntechOpen.
https://doi.org/10.5772/intechopen.75806
Basirat, M., Mousavi, S. M., Abbaszadeh, S., Ebrahimi, M., & Zarebanadkouki, M. (2019). The rhizosheath: a potential root trait helping plants to tolerate drought stress.
Plant and Soil, 445(1), 565-575.
https://doi.org/10.1007/s11104-019-04334-0
Bechtaoui, N., Rabiu, M. K., Raklami, A., Oufdou, K., Hafidi, M., & Jemo, M. (2021). Phosphate-dependent regulation of growth and stresses management in plants.
Frontiers in Plant Science, 12, 679916.
https://doi.org/10.3389/fpls.2021.679916
Begum, N., Ahanger, M. A., & Zhang, L. (2020). AMF inoculation and phosphorus supplementation alleviates drought induced growth and photosynthetic decline in
Nicotiana tabacum by up-regulating antioxidant metabolism and osmolyte accumulation.
Environmental and Experimental Botany, 176, 104088.
https://doi.org/10.1016/j.envexpbot.2020.104088
Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants.
New phytologist, 173(4), 677-702.
https://doi.org/10.1111/j.1469-8137.2007.01996.x
Cheraghi, M., Motesharezadeh, B., Mousavi, S. M., Basirat, M., Alikhani, H. A., & Zarebanadkouki, M. (2024). Application of silicon improves rhizosheath formation, morpho-physiological and biochemical responses of wheat under drought stress.
Plant and Soil, 503(1), 263-281.
https://doi.org/10.1007/s11104-024-06584-z
Cheraghi, M., Motesharezadeh, B., Mousavi, S. M., Ma, Q., & Ahmadabadi, Z. (2023b). Silicon (Si): a regulator nutrient for optimum growth of wheat under salinity and drought stresses-a review.
Journal of Plant Growth Regulation, 42(9), 5354-5378.
https://doi.org/10.1007/s00344-023-10959-4
Cheraghi, M., Motesharezadeh, B., Mousavi, S.M., Basirat, M., & Alikhani, H.A. (2025). Phosphorus bioavailability and silicon fractionation in wheat rhizosphere affected by soil water content and silicon application. Rhizosphere, 33, p.101017.
Cheraghi, M., Mousavi, S. M., & Zarebanadkouki, M. (2023a). Functions of rhizosheath on facilitating the uptake of water and nutrients under drought stress: A review.
Plant and Soil, 491(1), 239-263.
https://doi.org/10.1007/s11104-023-06126-z
Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought.
Frontiers in plant science, 4, 442.
https://doi.org/10.3389/fpls.2013.00442
Delhaize, E., James, R. A., & Ryan, P. R. (2012). Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (
Triticum aestivum) grown on acid soil.
New Phytologist, 195(3), 609-619.
https://doi.org/10.1111/j.1469-8137.2012.04183.x
Ding, Z., Kheir, A. M., Ali, M. G., Ali, O. A., Abdelaal, A. I., Lin, X. E., ... & He, Z. (2020). The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity.
Scientific Reports, 10(1), 2736.
https://doi.org/10.1038/s41598-020-59650-8
Fatemi, H., Zaghdoud, C., Nortes, P. A., Carvajal, M., & Martínez-Ballesta, M. D. C. (2020). Differential aquaporin response to distinct effects of two Zn concentrations after foliar application in pak choi (
Brassica rapa L.) plants.
Agronomy, 10(3), 450.
https://doi.org/10.3390/agronomy10030450
Freschet, G. T., Roumet, C., Comas, L. H., Weemstra, M., Bengough, A. G., Rewald, B., ... & Stokes, A. (2021). Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs.
New Phytologist, 232(3), 1123-1158.
https://doi.org/10.1111/nph.17072
Ghanem, H. E., Hamza, D. A., Zain El-Abdeen, A. A., Elbatrawy, W. S., & El-Habashy, H. M. (2025). Influence of zinc foliar spray on growth, some important physiological processes, yield and yield attributes of bread wheat under water stress.
Scientific Reports, 15(1), 14943.
https://doi.org/10.1038/s41598-025-94728-1
Hansel, F. D., Amado, T. J., Ruiz Diaz, D. A., Rosso, L. H., Nicoloso, F. T., & Schorr, M. (2017). Phosphorus fertilizer placement and tillage affect soybean root growth and drought tolerance.
Agronomy Journal, 109(6), 2936-2944.
https://doi.org/10.2134/agronj2017.04.0202
Hassan, M. U., Nawaz, M., Mahmood, A., Shah, A. A., Shah, A. N., Muhammad, F., ... & Qari, S. H. (2022). The role of zinc to mitigate heavy metals toxicity in crops.
Frontiers in Environmental Science, 10, 990223.
https://doi.org/10.3389/fenvs.2022.990223
Iqbal, S., Farooq, M., Cheema, S. A., & Afzal, I. (2017). Boron seed priming improves the seedling emergence, growth, grain yield and grain biofortification of bread wheat.
International Journal of Agriculture & Biology, 19(1).
https://doi.org/10.17957/ijab/15.0261
Jan, A. L., Amanullah, Mihoub, A., Fawad, M., Saeed, M. F., Khan, I., ... & Jamal, A. (2024). Enhancing wheat performance through phosphorus and zinc management strategies under varied irrigation regimes.
Environment, Development and Sustainability, 1-24.
https://doi.org/10.1007/s10668-024-05235-8
Karim, M. R., Zhang, Y. Q., Zhao, R. R., Chen, X. P., Zhang, F. S., & Zou, C. Q. (2012). Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese.
Journal of Plant Nutrition and Soil Science, 175(1), 142-151.
https://doi.org/10.1002/jpln.201100141
Khan, R., Gul, S., Hamayun, M., Shah, M., Sayyed, A., Ismail, H., & Gul, H. (2016). Effect of foliar application of zinc and manganese on growth and some biochemical constituents of Brassica junceae grown under water stress. American-Eurasian Journal of Agricultural & Environmental Sciences, 16, 984-997. DOI: 10.5829/idosi.aejaes.2016.16.5.12923
Kheirizadeh Arough, Y., Seyed Sharifi, R., & Seyed Sharifi, R. (2016). Bio fertilizers and zinc effects on some physiological parameters of triticale under water-limitation condition.
Journal of Plant Interactions, 11(1), 167-177.
https://doi.org/10.1080/17429145.2016.1262914
Kramer, P. J., & Boyer, J. S. (1995). Water relations of plants and soils. Academic press.
Liu, G., Ma, M., Wang, Z., Li, Q., Liu, F., Sun, Y., ... & Liu, C. (2025). Root transcriptome of wheat genotypes under zinc sufficient and deficiency conditions.
Journal of Plant Growth Regulation, 44(5), 2200-2212.
https://doi.org/10.1007/s00344-024-11538-x
Lynch, J. P. (2011). Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops.
Plant physiology, 156(3), 1041-1049.
https://doi.org/10.1104/pp.111.175414
Mathew, I., Shimelis, H., Mutema, M., Clulow, A., Zengeni, R., Mbava, N., & Chaplot, V. (2019). Selection of wheat genotypes for biomass allocation to improve drought tolerance and carbon sequestration into soils.
Journal of Agronomy and Crop Science, 205(4), 385-400.
https://doi.org/10.1111/jac.12332
Mohammadjani, E. & Yazdanian, N. (2014). Analysis of the Water Crisis Situation in the Country and its Management Requirements. Trend Quarterly, 21(65 & 66), 117-144. In Persian.
Moshiri, F., Khademi, Z., Saadat, S., Rashidi, N., & Shahabi, AliAsghar. (2014). Guidelines for Integrated Management of Soil Fertility and Wheat Nutrition. Soil and Water Research Institute.In Persian.
Mousavi, S. M., Tadayon, M. S., & Far, J. S. (2025a). Integrated application of foliar biostimulants and biofertilizers improves wheat resilience, nutrient uptake, and yield under deficit irrigation in semi-arid regions.
Agricultural Water Management, 322, 109958.
https://doi.org/10.1016/j.agwat.2025.109958
Mousavi, S. M., Tohidtalab, P., & Abolfathi, P. (2024). The importance and necessity to consider cadmium (Cd) as a problematic element in soil fertility and plant nutrition. In
Plant Responses to Cadmium Toxicity: Insights into Physiology and Defense Mechanisms (pp. 43-88). Nature Switzerland, Springer, Cham.
https://doi.org/10.1007/978-3-031-73266-9_2
Mousavi, S. M., Tohidtalab, P., & Sedaghat, A. (2025b). Optimal management of plant nutrition in arid and semiarid regions for sustainable agriculture. In
Sustainable Agriculture under Drought Stress (pp. 287-314). Academic Press.
https://doi.org/10.1016/B978-0-443-23956-4.00019-3
Mumtaz, M. Z., Aslam, M., Jamil, M., & Ahmad, M. (2014). Effect of different phosphorus levels on growth and yield of wheat under water stress conditions. Journal of Environment and Earth Science, 4(19), 23-30.
Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
Ostonen, I., Püttsepp, Ü., Biel, C., Alberton, O., Bakker, M. R., Lõhmus, K., ... & Brunner, I. (2007). Specific root length as an indicator of environmental change.
Plant Biosystems, 141(3), 426-442.
https://doi.org/10.1080/11263500701626069
Pandya, P., Kumar, S., Sakure, A. A., Rafaliya, R., & Patil, G. B. (2023). Zinc oxide nanopriming elevates wheat drought tolerance by inducing stress-responsive genes and physio-biochemical changes.
Current Plant Biology, 35, 100292.
https://doi.org/10.1016/j.cpb.2023.100292
Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. (2012). Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control.
New phytologist, 193(1), 30-50.
https://doi.org/10.1111/j.1469-8137.2011.03952.x
Rehman, A., Farooq, M., Ozturk, L., Asif, M., & Siddique, K. H. (2018). Zinc nutrition in wheat-based cropping systems.
Plant and Soil, 422(1), 283-315.
https://doi.org/10.1007/s11104-017-3507-3
Sacristán, D., González–Guzmán, A., Barrón, V., Torrent, J., & Del Campillo, M. C. (2019). Phosphorus-induced zinc deficiency in wheat pot-grown on noncalcareous and calcareous soils of different properties.
Archives of Agronomy and Soil Science, 65(2), 208-223.
https://doi.org/10.1080/03650340.2018.1492714
Sakya, A. T., Sulistyaningsih, E., Purwanto, B. H., & Indradewa, D. (2021). Application ZnSO
4 on tomato growth under drought stress conditions. In
IOP Conference Series: Earth and Environmental Science (Vol. 637, No. 1, p. 012077). IOP Publishing.
https://doi.org/10.1088/1755-1315/637/1/012077
Salem, E. (2021). Effect of ascorbic acid and zinc on the productivity of sunflower (
Helianthus annuus L.) under saline stress conditions.
Egyptian Journal of Agronomy, 43(1), 45-54.
https://doi.org/10.21608/agro.2021.51398.1240
Sangakkara, U. R., Frehner, M., & Nösberger, J. (2000). Effect of soil moisture and potassium fertilizer on shoot water potential, photosynthesis and partitioning of carbon in mungbean and cowpea.
Journal of Agronomy and Crop Science, 185(3), 201-207.
https://doi.org/10.1046/j.1439-037x.2000.00422.x
Sebhatleab, M., Gebresamuel, G., Girmay, G., Tsehaye, Y., & Haile, M. (2025). Effect of phosphorus and zinc fertilization on yield and nutrient use efficiency of wheat (
Triticum aestivum L.) in Tigray highlands of Northern Ethiopia.
Crops, 5(3), 32.
https://doi.org/10.3390/crops5030032
Tadayon, M. S., Mousavi, S. M., Hosseini, S. M., & Sadeghi, S. (2025). Integrated nutrient management and deficit irrigation: Enhancing wheat resilience and productivity under drought stress.
Agronomy Journal, 117(6), e70231.
https://doi.org/10.1002/agj2.70231
Tariq, A., Pan, K., Olatunji, O. A., Graciano, C., Li, Z., Sun, F., ... & Zhang, A. (2018). Phosphorous fertilization alleviates drought effects on
Alnus cremastogyne by regulating its antioxidant and osmotic potential.
Scientific reports, 8(1), 5644.
https://doi.org/10.1038/s41598-018-24038-2
Umair Hassan, M., Aamer, M., Umer Chattha, M., Haiying, T., Shahzad, B., Barbanti, L., ... & Guoqin, H. (2020). The critical role of zinc in plants facing the drought stress.
Agriculture, 10(9), 396.
https://doi.org/10.3390/agriculture10090396
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method.
Soil science, 37(1), 29-38.
https://doi.org/10.1097/00010694-193401000-00003
Weisany, W., Mohammadi, M., Tahir, N. A. R., Aslanian, N., & Omer, D. A. (2021). Changes in growth and nutrient status of maize (
Zea mays L.) in response to two zinc sources under drought stress.
Journal of Soil Science and Plant Nutrition, 21(4), 3367-3377.
https://doi.org/10.1007/s42729-021-00612-y
Zhang, L., Yan, M., Ren, Y., Chen, Y., & Zhang, S. (2021). Zinc regulates the hydraulic response of maize root under water stress conditions.
Plant Physiology and Biochemistry, 159, 123-134.
https://doi.org/10.1016/j.plaphy.2020.12.014
Zhang, X., Li, C., Lu, W., Wang, X., Ma, B., Fu, K., ... & Li, C. (2022). Comparative analysis of combined phosphorus and drought stress-responses in two winter wheat.
PeerJ, 10, e13887.
https://doi.org/10.7717/peerj.13887