Afreen, T., Singh, H., & Singh, J. S. (2019). Influence of changing patterns of precipitation and temperature on tropical soil ecosystem.
Tropical ecosystems: Structure, functions and challenges in the face of global change, 11-26.
https://doi.org/10.1007/978-981-13-8249-9_2
Anderson, J. P., & Domsch, K. H. (1978). A physiological method for the quantitative measurement of microbial biomass in soils.
Soil biology and biochemistry,
10 (3), 215-221.
https://doi.org/10.1016/0038-0717(78)90099-8
Bell, C. W., Fricks, B. E., Rocca, J. D., Steinweg, J. M., McMahon, S. K., & Wallenstein, M. D. (2013). High-throughput fluorometric measurement of potential soil extracellular enzyme activities.
Journal of visualized experiments: JoVE, (81), 50961.
https://doi.org/10.3791/50961
Blake, G. R. (1965). Bulk density.
Methods of soil analysis: Part 1 physical and mineralogical properties, including statistics of measurement and sampling,
9, 374-390.
https://doi.org/10.2134/agronmonogr9.1.c30
Canadell, J., Jackson, R. B., Ehleringer, J. B., Mooney, H. A., Sala, O. E., & Schulze, E. D. (1996). Maximum rooting depth of vegetation types at the global scale.
Oecologia,
108, 583-595.
https://doi.org/10.1007/BF00329030
Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., ... & Bradford, M. A. (2011). Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward.
Global change biology,
17 (11), 3392-3404.
https://doi.org/10.1111/j.1365-2486.2011.02496.x
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The M icrobial E fficiency‐M atrix S tabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?.
Global change biology,
19 (4), 988-995.
https://doi.org/10.1111/gcb.12113
Crowther, T. W., Todd-Brown, K. E., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., ... & Bradford, M. A. (2016). Quantifying global soil carbon losses in response to warming.
Nature,
540 (7631), 104-108.
https://doi.org/10.1038/nature20150
Djukic, I., Zehetner, F., Tatzber, M., & Gerzabek, M. H. (2010). Soil organic‐matter stocks and characteristics along an Alpine elevation gradient.
Journal of Plant Nutrition and Soil Science,
173 (1), 30-38.
https://doi.org/10.1002/jpln.200900027
Don, A., Rödenbeck, C., & Gleixner, G. (2013). Unexpected control of soil carbon turnover by soil carbon concentration.
Environmental Chemistry Letters,
11, 407-413.
https://doi.org/10.1007/s10311-013-0433-3
Egamberdieva, D., Renella, G., Wirth, S., & Islam, R. (2010). Enzyme activities in the rhizosphere of plants. In
Soil enzymology (pp. 149-166). Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-14225-3_8
Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities.
Proceedings of the National Academy of Sciences,
103 (3), 626-631.
https://doi.org/10.1073/pnas.0507535103
Garcia, C., Hernandez, T., & Costa, F. (1997). Potential use of dehydrogenase activity as an index of microbial activity in degraded soils.
Communications in soil science and plant analysis,
28 (1-2), 123-134.
https://doi.org/10.1080/00103629709369777
Garcia-Pausas, J., Casals, P., Camarero, L., Huguet, C., Sebastia, M. T., Thompson, R., & Romanya, J. (2007). Soil organic carbon storage in mountain grasslands of the Pyrenees: effects of climate and topography.
Biogeochemistry,
82, 279-289.
https://doi.org/10.1007/s10533-007-9071-9
García‐Palacios, P., Vandegehuchte, M. L., Shaw, E. A., Dam, M., Post, K. H., Ramirez, K. S., ... & Wall, D. H. (2015). Are there links between responses of soil microbes and ecosystem functioning to elevated CO 2, N deposition and warming? A global perspective.
Global Change Biology,
21 (4), 1590-1600.
https://doi.org/10.1111/gcb.12788
Gholami, R. (2019). Mineralogical evolution of Inceptisols and Alfisols at two elevation levels in Arasbaran forests [Master’s thesis, University of Tabriz].
Goidts, E., Van Wesemael, B., & Crucifix, M. (2009). Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales.
European Journal of Soil Science,
60 (5), 723-739.
https://doi.org/10.1111/j.1365-2389.2009.01157.x
Guo, M., Zhao, B., Wen, Y., Hu, J., Dou, A., Zhang, Z., ... & Zhu, J. (2022). Elevational pattern of soil organic carbon release in a Tibetan alpine grassland: Consequence of quality but not quantity of initial soil organic carbon.
Geoderma,
428, 116148.
https://doi.org/10.1016/j.geoderma.2022.116148
Gutiérrez-Girón, A., Díaz-Pinés, E., Rubio, A., & Gavilán, R. G. (2015). Both altitude and vegetation affect temperature sensitivity of soil organic matter decomposition in Mediterranean high mountain soils.
Geoderma,
237, 1-8.
https://doi.org/10.1016/j.geoderma.2014.08.005
Hagedorn, F., Moeri, A., Walthert, L., & Zimmermann, S. (2010). Kohlenstoff in Schweizer Waldböden–bei Klimaerwärmung eine potenzielle CO2-Quelle| Soil organic carbon in Swiss forest soils–a potential CO2 source in a warming climate.
Schweizerische Zeitschrift für Forstwesen,
161 (12), 530-535.
https://doi.org/10.3188/szf.2010.0530
Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., & Piñeiro, G. (2017). The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls.
Annual review of ecology, evolution, and systematics,
48 (1), 419-445.
https://doi.org/10.1146/annurev-ecolsys-112414-054234
Kallenbach, C. M., Grandy, A. S., Frey, S. D., & Diefendorf, A. F. (2015). Microbial physiology and necromass regulate agricultural soil carbon accumulation.
Soil Biology and Biochemistry,
91, 279-290.
https://doi.org/10.1016/j.soilbio.2015.09.005
Kleber, M., Sollins, P., & Sutton, R. (2007). A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces.
Biogeochemistry,
85, 9-24.
https://doi.org/10.1007/s10533-007-9103-5
Koch, O., Tscherko, D., & Kandeler, E. (2007). Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils.
Global Biogeochemical Cycles,
21 (4).
https://doi.org/10.1029/2007GB002983
Kong, J., He, Z., Chen, L., Zhang, S., Yang, R., & Du, J. (2022). Elevational variability in and controls on the temperature sensitivity of soil organic matter decomposition in alpine forests.
Ecosphere,
13 (4), e4010.
https://doi.org/10.1002/ecs2.4010
Kögel‐Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., ... & Leinweber, P. (2008). Organo‐mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry.
Journal of Plant Nutrition and Soil Science,
171 (1), 61-82.
https://doi.org/10.1002/jpln.200700048
Leifeld, J., & Fuhrer, J. (2005). The temperature response of CO 2 production from bulk soils and soil fractions is related to soil organic matter quality.
Biogeochemistry,
75, 433-453.
https://doi.org/10.1007/s10533-005-2237-4
Li, X., Xie, J., Zhang, Q., Lyu, M., Xiong, X., Liu, X., ... & Yang, Y. (2020). Substrate availability and soil microbes drive temperature sensitivity of soil organic carbon mineralization to warming along an elevation gradient in subtropical Asia.
Geoderma,
364, 114198.
https://doi.org/10.1016/j.geoderma.2020.114198
Luo, Z., Feng, W., Luo, Y., Baldock, J., & Wang, E. (2017). Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions.
Global change biology,
23 (10), 4430-4439.
https://doi.org/10.1111/gcb.13767
Mathieu, J. A., Hatté, C., Balesdent, J., & Parent, É. (2015). Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta‐analysis of radiocarbon profiles.
Global change biology,
21 (11), 4278-4292.
https://doi.org/10.1111/gcb.13012
Margalef, O., Sardans, J., Fernández-Martínez, M., Molowny-Horas, R., Janssens, I. A., Ciais, P., ... & Penuelas, J. (2017). Global patterns of phosphatase activity in natural soils.
Scientific reports,
7 (1), 1337.
https://doi.org/10.1038/s41598-017-01418-8
Mishra, U., Ussiri, D. A., & Lal, R. (2010). Tillage effects on soil organic carbon storage and dynamics in Corn Belt of Ohio USA.
Soil and Tillage Research,
107 (2), 88-96.
https://doi.org/10.1016/j.still.2010.02.005
Nogués-Bravo, D., Araújo, M. B., Errea, M. P., & Martínez-Rica, J. P. (2007). Exposure of global mountain systems to climate warming during the 21st Century.
Global environmental change,
17 (3-4), 420-428.
https://doi.org/10.1016/j.gloenvcha.2006.11.007
Pan, Y., Yu, S. S., Xiao, Z. C., Min, Y., Tian, T., Zheng, Y. M., ... & Yu, H. Q. (2023). Re-evaluation and modification of dehydrogenase activity tests in assessing microbial activity for wastewater treatment plant operation.
Water Research,
246, 120737.
https://doi.org/10.1016/j.watres.2023.120737
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils.
Nature,
532 (7597), 49-57.
https://doi.org/10.1038/nature17174
Powlson, D. S., Whitmore, A. P., & Goulding, K. W. (2011). Soil carbon sequestration to mitigate climate change: a critical re‐examination to identify the true and the false.
European journal of soil science,
62 (1), 42-55.
https://doi.org/10.1111/j.1365-2389.2010.01342.x
Raffeld, A. M., Bradford, M. A., Jackson, R. D., Rath, D., Sanford, G. R., Tautges, N., & Oldfield, E. E. (2024). The importance of accounting method and sampling depth to estimate changes in soil carbon stocks.
Carbon Balance and Management,
19 (1), 2.
https://doi.org/10.1186/s13021-024-00249-1
Rezaei, H., Jsfarzadeh, A. A., Alijanpour, A., Shahbazi, F., & Valizadeh Kamran, K. (2017). Genetically evolution of Arasbaran forests soils along altitudinal transects of Kaleybar Chai Sofla Sub-Basin.
Water and Soil Science,
26 (4.1), 151-166.
https://water-soil.tabrizu.ac.ir/article_5864.html?lang=en
Rezaei, H., Jafarzadeh, A. A., Alijanpour, A., Shahbazi, F., & Valizadeh Kamran, K. (2020). Soil Organic Matter Condition in Forest Stands of Arasbaran.
Water and Soil,
34 (1), 115-127.
https://doi.org/10.22067/jsw.v34i1.80633
Rustad, L. E. J. L., Campbell, J., Marion, G., Norby, R., Mitchell, M., Hartley, A., ... & Gcte-News. (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming.
Oecologia,
126, 543-562.
https://doi.org/10.1007/s004420000544
Schinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. (1996). Enzymes involved in carbon metabolism. In
Methods in Soil Biology (pp. 185-207). Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-60966-4_12
Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., ... & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property.
Nature,
478 (7367), 49-56.
https://doi.org/10.1038/nature10386
Schuur, E. A., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B., Goryachkin, S. V., ... & Zimov, S. A. (2008). Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle.
BioScience,
58 (8), 701-714.
https://doi.org/10.1641/B580807
Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., ... & Zeglin, L. H. (2008). Stoichiometry of soil enzyme activity at global scale.
Ecology letters,
11 (11), 1252-1264.
https://doi.org/10.1111/j.1461-0248.2008.01245.x
Sinsabaugh, R. L., Hill, B. H., & Follstad Shah, J. J. (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment.
Nature,
462 (7274), 795-798.
https://doi.org/10.1038/nature08632
Souza, C. R., Mariano, R. F., Maia, V. A., Pompeu, P. V., Dos Santos, R. M., & Fontes, M. A. L. (2023). Carbon stock and uptake in the high-elevation tropical montane forests of the threatened Atlantic Forest hotspot: Ecosystem function and effects of elevation variation.
Science of The Total Environment,
882, 163503.
https://doi.org/10.1016/j.scitotenv.2023.163503
Steinweg, J. M., Dukes, J. S., Paul, E. A., & Wallenstein, M. D. (2013). Microbial responses to multi-factor climate change: effects on soil enzymes.
Frontiers in microbiology,
4, 146.
https://doi.org/10.3389/fmicb.2013.00146
Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., ... & Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon.
Agriculture, Ecosystems & Environment,
164, 80-99.
https://doi.org/10.1016/j.agee.2012.10.001
Stone, M. M., DeForest, J. L., & Plante, A. F. (2014). Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory.
Soil Biology and Biochemistry,
75, 237-247.
https://doi.org/10.1016/j.soilbio.2014.04.017
Sundqvist, M. K., Sanders, N. J., & Wardle, D. A. (2013). Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change.
Annual review of ecology, evolution, and systematics,
44 (1), 261-280.
https://doi.org/10.1146/annurev-ecolsys-110512-135750
Tashi, S., Singh, B., Keitel, C., & Adams, M. (2016). Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta‐analysis of global data.
Global change biology,
22 (6), 2255-2268.
https://doi.org/10.1111/gcb.13234
Tunlid, A., & White, D. C. (2021). Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. In
Soil biochemistry (pp. 229-262). CRC Press.
https://doi.org/10.1201/9781003210207
VandenBygaart, A. J., & Angers, D. A. (2006). Towards accurate measurements of soil organic carbon stock change in agroecosystems.
Canadian Journal of Soil Science,
86 (3), 465-471.
https://doi.org/10.4141/S05-106
Von Haden, A. C., Yang, W. H., & DeLucia, E. H. (2020). Soils' dirty little secret: Depth‐based comparisons can be inadequate for quantifying changes in soil organic carbon and other mineral soil properties.
Global Change Biology,
26 (7), 3759-3770.
https://doi.org/10.1111/gcb.15124
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method.
Soil science,
37 (1), 29-38.
https://journals.lww.com/soilsci/toc/1934/01000
Wendt, J. W., & Hauser, S. (2013). An equivalent soil mass procedure for monitoring soil organic carbon in multiple soil layers.
European Journal of Soil Science,
64 (1), 58-65.
https://doi.org/10.1111/ejss.12002
Wiesmeier, M., Burmeister, J., Garcia-Franco, N., & Sümmerer, M. (2024). Soil Organic Carbon and Nitrogen Changes in Agricultural Soils of Bavaria Between 1986 and 2016 as Driven by Management and Climate Change.
Available at SSRN 4901937.
https://dx.doi.org/10.2139/ssrn.4901937
Yoo, K., Amundson, R., Heimsath, A. M., & Dietrich, W. E. (2006). Spatial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle.
Geoderma,
130 (1-2), 47-65.
https://doi.org/10.1016/j.geoderma.2005.01.008
Zhang, R., & Wienhold, B. J. (2002). The effect of soil moisture on mineral nitrogen, soil electrical conductivity, and pH.
Nutrient cycling in Agroecosystems,
63, 251-254.
https://doi.org/10.1023/A:1021115227884