Ali-Ahyai, M., & Behbahani Zadeh, A. A. (1993). Methods of Soil Analysis Descriptions. Soil and Water Research Institute. Technical Paper, (893).
Banaei, M. H. (1999). Moisture and thermal map of Iranian soils. Soil and Water Research Institute, Tehran, Iran.
Bekele, B., & Gemi, Y. (2021). Soil erosion risk and sediment yield assessment with universal soil loss equation and GIS: in Dijo watershed, Rift valley Basin of Ethiopia. Modeling Earth Systems and Environment, 7(1), 273-291.
Bhattacharya, R. K., Chatterjee, N. D., & Das, K. (2020). Sub-basin prioritization for assessment of soil erosion susceptibility in Kangsabati, a plateau basin: a comparison between MCDM and SWAT models. Science of the Total Environment, 734, 139474.
Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal, 54(5), 464-465.
Cao, H. F., Chang, A. C., & Page, A. L. (1984). Heavy metal contents of sludge‐treated soils as determined by three extraction procedures (Vol. 13, No. 4, pp. 632-634). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Chen, C. N., Tfwala, S. S., & Tsai, C. H. (2020). Climate change impacts on soil erosion and sediment yield in a watershed. Water, 12(8), 2247.
Choukri, F., Raclot, D., Naimi, M., Chikhaoui, M., Nunes, J. P., Huard, F., ... & Pépin, Y. (2020). Distinct and combined impacts of climate and land use scenarios on water availability and sediment loads for a water supply reservoir in northern Morocco. International Soil and Water Conservation Research, 8(2), 141-153.
Collins, A. L., & Walling, D. E. (2002). Selecting fingerprint properties for discriminating potential suspended sediment sources in river basins. Journal of hydrology, 261(1-4), 218-244.
Collins, A. L., & Walling, D. E. (2007). Sources of fine sediment recovered from the channel bed of lowland groundwater-fed catchments in the UK. Geomorphology, 88(1-2), 120-138.
Collins, A. L., Blackwell, M., Boeckx, P., Chivers, C. A., Emelko, M., Evrard, O., ... & Zhang, Y. (2020). Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes. Journal of Soils and Sediments, 20(12), 4160-4193.
Collins, A. L., Walling, D. E., & Leeks, G. J. L. (1998). Use of composite fingerprints to determine the provenance of the contemporary suspended sediment load transported by rivers. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group, 23(1), 31-52.
Collins, A. L., Zhang, Y. S., Hickinbotham, R., Bailey, G., Darlington, S., Grenfell, S. E., ... & Blackwell, M. (2013). Contemporary fine‐grained bed sediment sources across the River Wensum Demonstration Test Catchment, UK. Hydrological Processes, 27(6), 857-884.
Collins, A. L., Zhang, Y., McChesney, D., Walling, D. E., Haley, S. M., & Smith, P. (2012). Sediment source tracing in a lowland agricultural catchment in southern England using a modified procedure combining statistical analysis and numerical modelling. Science of the Total Environment, 414, 301-317.
Collins, A. L., Zhang, Y., Walling, D. E., Grenfell, S. E., & Smith, P. (2010). Tracing sediment loss from eroding farm tracks using a geochemical fingerprinting procedure combining local and genetic algorithm optimisation. Science of the Total Environment, 408(22), 5461-5471.
Fatahi, A., Gholami, H., Esmaeilpour, Y., & Fathabadi, A. (2022). Fingerprinting the spatial sources of fine-grained sediment deposited in the bed of the Mehran River, southern Iran. Scientific Reports, 12(1), 3880.
Franz, C., Makeschin, F., Weiß, H., & Lorz, C. (2014). Sediments in urban river basins: Identification of sediment sources within the Lago Paranoá catchment, Brasilia DF, Brazil–using the fingerprint approach. Science of the Total Environment, 466, 513-523.
García‐Ruiz, J. M., Beguería, S., Lana‐Renault, N., Nadal‐Romero, E., & Cerdà, A. (2017). Ongoing and emerging questions in water erosion studies. Land Degradation & Development, 28(1), 5-21.
Ghadimi, A. A., Khodashenas, S. R., Akbarzadeh, M. R., & Ghahraman, B. (2015). Sediment Fingerprinting Entering the Lake Dam Using Chemicals (Case Study: Qoljoq River in North Khorasan province). Journal of Dam and Hydroelectric Powerplant, 2(6), 20-31 .(in persian).
Gruszowski, K. E., Foster, I. D., Lees, J. A., & Charlesworth, S. M. (2003). Sediment sources and transport pathways in a rural catchment, Herefordshire, UK. Hydrological Processes, 17(13), 2665-2681.
Haddadchi, A., Hicks, M., Olley, J. M., Singh, S., & Srinivasan, M. S. (2019). Grid‐based sediment tracing approach to determine sediment sources. Land Degradation & Development, 30(17), 2088-2106.
Haddadchi, A., Nosrati, K., & Ahmadi, F. (2014). Differences between the source contribution of bed material and suspended sediments in a mountainous agricultural catchment of western Iran. Catena, 116, 105-113.
Hair, J. F. (2011). Multivariate data analysis: An overview. International encyclopedia of statistical science, 904-907.
Hakimkhani, Sh., & Alijanpour, A. (2010). Detection of outlier data in sediment source fingerprinting method. Journal of Soil and Water Conservation Research (Agricultural and Natural Resources Sciences), 17, 23–43.(in persian..
Heidary, K., Najafi Nejad, A., Khormali, F., & Baba Nejad, M. (2013). Determining land units contributions to suspended sediment yield using sediment fingerprinting method (Case study: Tull Bane Basin, Golestan Province). Quarterly Journal of Environmental Erosion Researches, (11), 27–38.(in persian).
Kouhpeima, A., Hashemi, S. A. A., Feiznia, S., & Ahmadi, H. (2010). Using sediment deposited in small reservoirs to quantify sediment yield in two small catchments of Iran. Journal of Sustainable Development, 3(3), 133.(in persian).
Kuti, I. A., & Ewemoje, T. A. (2021). Modelling of sediment yield using the soil and water assessment tool (SWAT) model: a case study of the Chanchaga Watersheds, Nigeria. Scientific African, 13, e00936.
Li, F., Zhang, J., Huang, J., Huang, D., Yang, J., Song, Y., & Zeng, G. (2016). Heavy metals in road dust from Xiandao District, Changsha City, China: characteristics, health risk assessment, and integrated source identification. Environmental Science and Pollution Research, 23(13), 13100-13113.
Michelaki, K., & Hancock, R. G. (2013). Reassessment of elemental concentration data of sediments from the western delta of the Nile River. Open Journal of Archaeometry, 1(1), e2-e2.
Miller, J. R., Mackin, G., & Miller, S. M. O. (2015). Application of geochemical tracers to fluvial sediment (p. 142). Cham: Springer International Publishing.
Mohaghegh. P.(2016). Evaluation of land use type impact on runoff and sediment production in the Chughakhor watershed (Chaharmahal va Bakhtiari province). The thesis of Ph.D in soil science. Faculty of Agriculture, Shahrekord University.(in persian).
Montanarella, L. (2015). Agricultural policy: Govern our soils. Nature, 528(7580), 32-33.
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of hydrology, 10(3), 282-290.
Nelson, D. W., & Sommers, L. (1983). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 Chemical And Microbiological Properties, 9, 539-579.
Nosrati, K., Collins, A. L., & Madankan, M. (2018). Fingerprinting sub-basin spatial sediment sources using different multivariate statistical techniques and the Modified MixSIR model. Catena, 164, 32-43.
Nosrati, K. (2011). Manshāyābi-ye resūb bar asas barāvard-e adam-e qat'iyat [Sediment source identification based on uncertainty estimation]. Pazhuhesh-hā-ye Āb-e Irān (Iranian Water Research), 5(9), 51-60.(in persian).
Nosrati, K., Govers, G., Ahmadi, H., Sharifi, F., Amoozegar, M. A., Merckx, R., and Vanmaercke, M. (2011). An exploratory study on the use of enzyme activities as sediment tracers: biochemical fingerprints. International Journal of Sediment Research.26: 136-151.
Nosrati, K., Govers, G., Semmens, B. X., & Ward, E. J. (2014). A mixing model to incorporate uncertainty in sediment fingerprinting. Geoderma, 217, 173-180.
Olson, D. F. (1969). Alaska reindeer herdsmen. A study of native management in transition. Institute of Social, Economic and Government Research, University of Alaska.
Owens, P. N. (2022). Sediment source fingerprinting: are we going in the right direction?. Journal of Soils and Sediments, 22(6), 1643-1647.
Page AL, Miller RH, Keeney DR. )1982(. Methods of soil analysis. American Society of Agronomy.
Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: critical comparison of methods of determination. Science of the total environment, 346(1-3), 1-16.
Roudier, P., Beaudette, D. E., & Hewitt, A. E. (2012, April). A conditioned Latin hypercube sampling algorithm incorporating operational constraints. Minasny B, Malone BP, McBratney AB. Digital soil assessments and beyond: proceedings of the 5th Global workshop on digital soil mapping. Sydney: CRC Press.
Sadeghi, S. H., Najafi, S., and Bakhtiari, A. R. (2017). Sediment contribution from different geologic formations and land uses in an Iranian small watershed, case study. International journal of sediment research, 32: 210-220.
Smith, H. G., Blake, W. H., & Owens, P. N. (2013). Discriminating fine sediment sources and the application of sediment tracers in burned catchments: a review. Hydrological Processes, 27(6
Stone, M., Collins, A. L., Silins, U., Emelko, M. B., & Zhang, Y. S. (2014). The use of composite fingerprints to quantify sediment sources in a wildfire impacted landscape, Alberta, Canada. Science of the Total Environment, 473, 642-650.
Tiecher, T., Minella, J. P. G., Caner, L., Evrard, O., Zafar, M., Capoane, V., ... & Dos Santos, D. R. (2017). Quantifying land use contributions to suspended sediment in a large cultivated catchment of Southern Brazil (Guaporé River, Rio Grande do Sul). Agriculture, Ecosystems & Environment, 237, 95-108.
Tukey, J. W. (1977). Exploratory data analysis (Vol. 2, pp. 131-160). Reading, MA: Addison-wesley.
Uber, M., Legout, C., Nord, G., Crouzet, C., Demory, F., & Poulenard, J. (2019). Comparing alternative tracing measurements and mixing models to fingerprint suspended sediment sources in a mesoscale Mediterranean catchment. Journal of Soils and Sediments, 19(9), 3255-3273.
Upadhayay, H. R., Lamichhane, S., Bajracharya, R. M., Cornelis, W., Collins, A. L., & Boeckx, P. (2020). Sensitivity of source apportionment predicted by a Bayesian tracer mixing model to the inclusion of a sediment connectivity index as an informative prior: illustration using the Kharka catchment (Nepal). Science of the Total Environment, 713, 136703.
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38.
Wallbrink, P. J., Martin, C. E., & Wilson, C. J. (2003). Quantifying the contributions of sediment, sediment-P and fertiliser-P from forested, cultivated and pasture areas at the landuse and catchment scale using fallout radionuclides and geochemistry. Soil and tillage research, 69(1-2), 53-68.
Walling, D. E. (2005). Tracing suspended sediment sources in catchments and river systems. Science of the total environment, 344(1-3), 159-184.
Walling, D. E., & Woodward, J. C. (1992). Use of radiometric fingerprints to derive information on suspended sediment sources. Erosion and sediment transport monitoring programmes in river basins, 210, 153-164.
Walling, D. E., Collins, A. L., & Stroud, R. W. (2008). Tracing suspended sediment and particulate phosphorus sources in catchments. Journal of Hydrology, 350(3-4), 274-289.
Wu, L., He, Y., & Ma, X. (2020). Can soil conservation practices reshape the relationship between sediment yield and slope gradient?. Ecological Engineering, 142, 105630.
Yang, Y., Li, Y., & Zhang, J. (2016). Chemical speciation of cadmium and lead and their bioavailability to cole (Brassica campestris L.) from multi-metals contaminated soil in northwestern China. Chemical Speciation & Bioavailability, 28(1-4), 33-41.
Zhang, C., Selinus, O., & Schedin, J. (1998). Statistical analyses for heavy metal contents in till and root samples in an area of southeastern Sweden. Science of the total environment, 212(2-3), 217-232.
Zhang, J., Yang, M., Zhang, F., Zhang, W., Zhao, T., and Li, Y. (2017). Fingerprinting sediment sources after an extreme rainstorm event in a small catchment on the Loess Plateau, PR China. Land Degradation and Development, 28: 2527-2539.
Zorratipour, M., Zarei, H., Sharifi, M. R., and Radmanesh, F. (2021). Hydrological Simulation of Bakhtegan Basin in Iran Using the SWAT Model. Irrigation Sciences and Engineering (JISE). 44: 39-51.