Investigate the environmental and human impacts and challenges of emerging PFAS contaminants and solutions for managing and remediating them in a sustainable manner

Document Type : Review

Authors

1 Department of Environmental Engineering, Faculty of Environment, University of Tehran, Tehran, Iran.

2 Department of Environmental Engineering, Faculty of Environment, University of Tehran, Tehran,

3 Department of Department of Planning, Environmental Management, and HSE, Faculty of Environment, University of Tehran, Tehran.

Abstract

Perfluoroalkyl substances (PFAS), as emerging synthetic pollutants with high persistence and potential health risks, have increasingly gained attention. Due to their specific physicochemical properties, these substances are resistant to degradation in the environment and can remain for extended periods. PFAS are utilized in various industries, such as the production of water-resistant textiles, non-stick cookware, food packaging, and fire-fighting foams. They enter the environment through numerous pathways, including industrial wastewater and the food chain, causing issues such as endocrine disorders, reduced immune function, and pregnancy risks. Neglecting this matter can bring about irreparable consequences for food security, human health, and sustainable development. This study emphasizes the necessity of sustainable management of PFAS, highlighting that without swift actions, these compounds pose a serious threat to ecosystems. According to the United States Environmental Protection Agency (EPA), the permissible level of PFAS in drinking water is 70 ng/L, and concentrations above this limit can result in hormonal disruptions and weakened immunity. PFAS concentrations vary widely in different environments: 300 to 125,000 ng/L in leachate, 0.01 to 460,000 µg/Kg in soil, and 0.2 to 500,000 µg/Kg in biosolids. Thermal methods are effective in removing PFAS from soil but are costly and environmentally disruptive, while biological approaches like phytoremediation are eco-friendlier. For water, advanced technologies such as reverse osmosis, activated carbon, and ion exchange are among the most effective methods, capable of removing more than 90% of PFAS. Strategies such as reducing PFAS production by 30–40% over the next decade could significantly contribute to safeguarding ecosystem health and sustainability.

Keywords

Main Subjects


Aim

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) constitute a class of synthetic chemicals distinguished by strong carbon–fluorine bonds and remarkable persistence in the environment. Due to their resistance to physical, chemical, and biological degradation, PFAS pose significant risks to human health and ecosystems. These chemicals predominantly find their way into soil, water bodies, and landfills via industrial effluents, fire-fighting foams, and consumer products such as non-stick cookware and waterproof textiles. Growing evidence of their association with adverse health effects (e.g., endocrine disruption, compromised immune system, and increased cancer risk) has heightened research and regulatory interest in PFAS. Hence, the purpose of this extended abstract is to comprehensively explore the routes of PFAS contamination in soils, surface and groundwater, landfills, and food chains, and to underscore effective strategies for their management and remediation.

Method

In this study, a detailed literature review was conducted on scientific papers and technical reports focusing on the years 2023 and 2024, as well as several foundational sources from 2022. A multi-pronged approach guided the investigation:

Data Collection:

Relevant publications on PFAS contamination, toxicity, environmental fate, and legislative measures were identified through databases such as Scopus, Web of Science, and PubMed.

Review of Regulatory Frameworks:

Existing regulations and advisories worldwide (particularly those from the United States, European Union, Australia, and select Asian countries) were examined to provide insights into permissible concentration limits of PFAS in soil, water, sludge, and biosolids.

Focus on Contamination Pathways:

Studies detailing PFAS transport in landfills (including municipal solid waste, sewage sludge, and industrial effluents), their accumulation in biota, and subsequent implications for human health were systematically analyzed.

Assessment of Treatment Technologies:

Emerging and conventional treatment practices—including adsorption (e.g., granular activated carbon), ion exchange resins, thermal methods, electrochemical oxidation, and bioremediation—were reviewed to assess effectiveness, limitations, and feasibility.

Findings

The review reveals that PFAS contamination arises through both primary sources (e.g., direct industrial discharge, usage of aqueous film-forming foams in military bases and airports) and secondary sources (e.g., use of biosolids as fertilizers, groundwater irrigation with contaminated water, and long-range atmospheric transport). Key findings include:

Environmental Distribution:

Contamination Pathways: Focus on industrial discharge, landfill leachate (300–125,000 ng/L), and agricultural biosolid application.

Regulatory Review: Evaluation of global PFAS limits in soil (0.01–460,000 µg/kg), water (70 ng/L U.S. EPA drinking water limit), and biosolids (0.2–500,000 µg/kg).

Water: PFAS concentrations in U.S. drinking water often exceed the EPA advisory limit (70 ng/L), with studies indicating potential links to hormonal disruptions (e.g., thyroid dysfunction).

Soil: Agricultural soils near industrial sites show PFAS levels up to 460,000 µg/kg, with short-chain PFAS (e.g., PFBA) exhibiting higher mobility.

Landfills: Leachate concentrations reach 125,000 ng/L, influenced by landfill age and design.

Health Risks:

Elevated levels of PFAS in drinking water (often above the U.S. Environmental Protection Agency limit of 70 ng/L) increase the likelihood of endocrine disturbances, immune system impairment, reduced vaccine response, hepatic toxicity, and heightened cancer risks.

Endocrine Disruption: PFOS exposure correlates with reduced thyroid hormone levels.

Immune Suppression: Children with PFAS serum levels >20 ng/mL show 40% lower vaccine antibody titers.

Cancer: PFOA exposure increases kidney cancer risk

Remediation Efficacy:

Treatment Technologies: Assessment of thermal methods (effective but costly), adsorption (>90% removal via activated carbon), and bioremediation (eco-friendly but less efficient).

Water: Reverse osmosis and activated carbon achieve >90% PFAS removal.

Soil: Thermal desorption reduces PFAS by 85–99%, but it is very expensive.

Emerging Methods: Phytoremediation shows 30–60% efficiency for short-chain PFAS.

Conclusion

PFAS pose irreversible threats to ecosystems and human health. Immediate actions include:

Reducing PFAS production by 30–40% by 2035.

Enforcing stricter regulations (e.g., EU’s REACH).

Investing in cost-effective remediation (e.g., hybrid adsorption-biological systems).
Global collaboration is critical to address contamination hotspots and safeguard food security.

Author Contributions

“Conceptualization, Shayan Shariati, Mehrdad Manafianvar, Majid Baghdadi, Touraj Naseabadi; Methodology, Shayan Shariati, Mehrdad Manafianvar; Data curation, Shayan Shariati, Mehrdad Manafianvar; Writing—original draft preparation, Shayan Shariati, Mehrdad Manafianvar; Funding acquisition and project administration, Shayan Shariati; Visualization, Shayan Shariati, Mehrdad Manafianvar; Results Interpretation, Shayan Shariati, Majid Baghdadi, Touraj Naseabadi; Review and Editing, Final report review, Shayan Shariati, Majid Baghdadi, Touraj Naseabadi.” All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Data will be available based on request from the authors.

Acknowledgements

This work is based upon research funded by Iran National Science Foundation (INSF) under project No. 4030287

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Ackerman Grunfeld, D., Gilbert, D., Hou, J., Jones, A. M., Lee, M. J., Kibbey, T. C., & O’Carroll, D. M. (2024). Underestimated burden of per-and polyfluoroalkyl substances in global surface waters and groundwaters. Nature Geoscience, 1-7.
Alder, A. C., & van der Voet, J. (2015). Occurrence and point source characterization of perfluoroalkyl acids in sewage sludge. Chemosphere, 129, 62-73.
Ambaye, T. G., Vaccari, M., Prasad, S., & Rtimi, S. (2022). Recent progress and challenges on the removal of per-and poly-fluoroalkyl substances (PFAS) from contaminated soil and water. Environmental Science and Pollution Research, 29 (39), 58405-58428.
Amen, R., Ibrahim, A., Shafqat, W., & Hassan, E. B. (2023). A Critical Review on PFAS Removal from Water: Removal Mechanism and Future Challenges. Sustainability, 15 (23), 16173.
Anderson, R. H., Long, G. C., Porter, R. C., & Anderson, J. K. (2018). Occurrence of select perfluoroalkyl substances at US Air Force aqueous film-forming foam release sites other than fire training areas: Field validation of critical fate and transport properties. In Perfluoroalkyl Substances in the Environment (pp. 353-372). CRC Press.
Andrews, D. Q., Hayes, J., Stoiber, T., Brewer, B., Campbell, C., & Naidenko, O. V. (2021). Identification of point source dischargers of per‐and polyfluoroalkyl substances in the United States. AWWA Water Science, 3 (5), e1252.
Ankley, G. T., Cureton, P. M., Hoke, R. A., Houde, M., Kumar, A., Kurias, J., Lanno, R. P., McCarthy, C., Newsted, J. L., Salice, C. J., Sample, B. E., Sepúlveda, M. a. S., Steevens, J. A., & Valsecchi, S. (2020). Assessing the Ecological Risks of Per- And Polyfluoroalkyl Substances: Current State-of-the Science and a Proposed Path Forward. Environmental Toxicology and Chemistry, 40 (30), 564-605.
Armstrong, D. L., Lozano, N., Rice, C. P., Ramirez, M., & Torrents, A. (2016). Temporal trends of perfluoroalkyl substances in limed biosolids from a large municipal water resource recovery facility. Journal of Environmental Management, 165, 88-95.
Aro, R., Eriksson, U., Kärrman, A., Chen, F., Wang, T., & Yeung, L. W. (2021). Fluorine mass balance analysis of effluent and sludge from Nordic countries. Acs Es&T Water, 1 (9), 2087-2096.
Bao, Y., Deng, S., Jiang, X., Qu, Y., He, Y., Liu, L., Chai, Q., Mumtaz, M., Huang, J., Cagnetta, G., & Yu, G. (2018). Degradation of PFOA Substitute: GenX (HFPO–DA Ammonium Salt): Oxidation with UV/Persulfate or Reduction with UV/Sulfite? Environmental science & technology, 52 (20), 11728-11734.
Bao, J., Yu, W.-J., Liu, Y., Wang, X., Jin, Y.-H., & Dong, G.-H. (2019). Perfluoroalkyl substances in groundwater and home-produced vegetables and eggs around a fluorochemical industrial park in China. Ecotoxicology and Environmental Safety, 171, 199-205.
Barry, V., Winquist, A., & Steenland, K. (2013). Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environmental health perspectives, 121 (11-12), 1313-1318.
BCLP Client Intelligent. (2023). PFAS update: state soil concentration regulations. Available at : . https://www.bclplaw.com/en-US/events-insights-news/pfas-update-state-soil-concentration-regulations-july-2023.html
Bonato, M., Corrà, F., Bellio, M., Guidolin, L., Tallandini, L., Irato, P., & Santovito, G. (2020). PFAS environmental pollution and antioxidant responses: an overview of the impact on human field. International Journal of Environmental Research and Public Health, 17(21), 8020.
Brandsma, S., Koekkoek, J., Van Velzen, M., & de Boer, J. (2019). The PFOA substitute GenX detected in the environment near a fluoropolymer manufacturing plant in the Netherlands. Chemosphere, 220, 493-500.
Brase, R. A., Mullin, E. J., & Spink, D. C. (2021). Legacy and Emerging Per- And Polyfluoroalkyl Substances: Analytical Techniques, Environmental Fate, and Health Effects. International Journal of Molecular Sciences, 22(3), 995.
Brennan, N. M., Evans, A. T., Fritz, M. K., Peak, S. A., & von Holst, H. E. (2021). Trends in the regulation of per-and polyfluoroalkyl substances (PFAS): a scoping review. International Journal of Environmental Research and Public Health, 18 (20), 10900.
Brusseau, M. L., Anderson, R. H., & Guo, B. (2020). PFAS concentrations in soils: Background levels versus contaminated sites. Science of the total environment, 740, 140017.
Buck, R. C., Franklin, J., Berger, U., Conder, J. M., Cousins, I. T., De Voogt, P., Jensen, A. A., Kannan, K., Mabury, S. A., & van Leeuwen, S. P. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integrated environmental assessment and management, 7(4), 513-541.
Busch, J., Ahrens, L., Sturm, R., & Ebinghaus, R. (2010). Polyfluoroalkyl compounds in landfill leachates. Environmental Pollution, 158 (5), 1467-1471.
Campo, J., Masiá, A., Picó, Y., Farré, M., & Barceló, D. (2014). Distribution and fate of perfluoroalkyl substances in Mediterranean Spanish sewage treatment plants. Science of the total environment, 472, 912-922.
Cao, H., Jian-hua, P., Zhou, Z., Yang, Z., Wang, L., Sun, Y., Wang, Y., & Liang, Y. (2022). Investigation of the Binding Fraction of PFAS in Human Plasma and Underlying Mechanisms Based on Machine Learning and Molecular Dynamics Simulation. Environmental science & technology, 57 (46), 17762-17773.
Cao, L., Xu, W., Wan, Z., Li, G., & Zhang, F. (2022). Occurrence of PFASs and its effect on soil bacteria at a fire-training area using PFOS-restricted aqueous film-forming foams. Iscience, 25(4).
Cao, X., Wang, C., Lu, Y., Zhang, M., Khan, K., Song, S., Wang, P., & Wang, C. (2019). Occurrence, sources and health risk of polyfluoroalkyl substances (PFASs) in soil, water and sediment from a drinking water source area. Ecotoxicology and Environmental Safety, 174, 208-217.
CCME. (2021). Canadiansoilandgroundwater quality guidelines for the protection of environmental and human health. Available at: . https://ccme.ca/en/res/pfosfactsheeten.pdf
Che, S., Jin, B., Liu, Z., Yu, Y., Liu, J., & Men, Y. (2021). Structure-specific aerobic defluorination of short-chain fluorinated carboxylic acids by activated sludge communities. Environmental Science & Technology Letters, 8 (8), 668-674.
Chen, S., Jiao, X.-C., Gai, N., Li, X.-J., Wang, X.-C., Lu, G.-H., Piao, H.-T., Rao, Z., & Yang, Y.-L. (2016). Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China. Environmental Pollution, 211, 124-131.
Chen, Y., Zhang, H., Liu, Y., Bowden, J. A., Tolaymat, T. M., Townsend, T. G., & Solo-Gabriele, H. M. (2023). Evaluation of per-and polyfluoroalkyl substances (PFAS) in leachate, gas condensate, stormwater and groundwater at landfills. Chemosphere, 318, 137903.
Chen, Y., Zhang, H., Liu, Y., Bowden, J. A., Townsend, T. G., & Solo-Gabriele, H. M. (2024a). Evaluation of per-and polyfluoroalkyl substances (PFAS) in landfill liquids from Pennsylvania, Colorado, and Wisconsin. Chemosphere, 355, 141719.
Chen, Y., Zhang, H., Liu, Y., Bowden, J. A., Townsend, T. G., & Solo-Gabriele, H. M. (2024b). Evaluation of per-and polyfluoroalkyl substances (PFAS) released from two Florida landfills based on mass balance analyses. Waste Management, 175, 348-359.
Chetverikov, S. P., Sharipov, D. A., Korshunova, T. Y., & Loginov, O. (2017). Degradation of perfluorooctanyl sulfonate by strain Pseudomonas plecoglossicida 2.4-D. Applied Biochemistry and Microbiology, 53 (5), 533-538.
Chiriac, F. L., Stoica, C., Iftode, C., Pirvu, F., Petre, V. A., Paun, I., Pascu, L. F., Vasile, G. G., & Nita-Lazar, M. (2023). Bacterial biodegradation of perfluorooctanoic acid (PFOA) and perfluorosulfonic acid (PFOS) using pure pseudomonas strains. Sustainability, 15 (18), 14000.
Chirikona, F., Filipovic, M., Ooko, S., & Orata, F. (2015). Perfluoroalkyl acids in selected wastewater treatment plants and their discharge load within the Lake Victoria basin in Kenya. Environmental Monitoring and Assessment, 187, 1-12.
Choi, G.-H., Lee, D.-Y., Jeong, D.-K., Kuppusamy, S., Lee, Y. B., Park, B.-J., & Kim, J.-H. (2017). Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) concentrations in the South Korean agricultural environment: A national survey. Journal of Integrative Agriculture, 16 (8),1841-1851.
Colomer-Vidal, P., Jiang, L., Mei, W., Luo, C., Lacorte, S., Rigol, A., & Zhang, G.(2022). Plant uptake of perfluoroalkyl substances in freshwater environments (Dongzhulong and Xiaoqing Rivers, China). Journal of Hazardous Materials, 421, 126768.
Coperchini, F., Croce, L., Ricci, G., Magri, F., Rotondi, M., Imbriani, M., & Chiovato, L.(2021). Thyroid disrupting effects of old and new generation PFAS. Frontiers in endocrinology, 11, 612320.
Costantini, D., Blévin, P., Herzke, D., Moe, B., Gabrielsen, G. W., Bustnes, J. O., & Chastel, O. (2019). Higher Plasma Oxidative Damage and Lower Plasma Antioxidant Defences in an Arctic Seabird Exposed to Longer Perfluoroalkyl Acids. Environmental research, 168, 278-285.
Cousins, I. T., Johansson, J. H., Salter, M., Sha, B., & Scheringer, M. (2022). Outside the Safe Operating Space of a New Planetary Boundary for Per- And Polyfluoroalkyl Substances (PFAS). Environmental science & technology, 56 (16), 11172-11179.
Dalahmeh, S., Tirgani, S., Komakech, A. J., Niwagaba, C. B., & Ahrens, L. (2018). Per- and polyfluoroalkyl substances (PFASs) in water, soil and plants in wetlands and agricultural areas in Kampala, Uganda. Science of the total environment, 631-632, 660-667.
Dauchy, X., Boiteux, V., Colin, A., Hémard, J., Bach, C., Rosin, C., & Munoz, J.-F. (2019). Deep seepage of per-and polyfluoroalkyl substances through the soil of a firefighter training site and subsequent groundwater contamination. Chemosphere, 214, 729-737.
Dennis, N. M., Hossain, F., Subbiah, S., Karnjanapiboonwong, A., Dennis, M. L., McCarthy, C., Heron, C. G., Jackson, W. A., Crago, J., Field, J. A., Salice, C. J., & Anderson, T. A. (2021). Chronic Reproductive Toxicity Thresholds for Northern Bobwhite Quail (<i>Colinus Virginianus</I>) Exposed to Perfluorohexanoic Acid (PFHxA) and a Mixture of Perfluorooctane Sulfonic Acid (PFOS) and PFHxA. Environmental Toxicology and Chemistry, 40 (9), 2601-2614.
Dickman, R. A., & Aga, D. S. (2022). A review of recent studies on toxicity, sequestration, and degradation of per-and polyfluoroalkyl substances (PFAS). Journal of Hazardous Materials, 436, 129120.
Domingo, J. L., & Nadal, M. (2019). Human exposure to per-and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature. Environmental research, 177, 108648.
Duchesne, A. L., Brown, J. K., Patch, D. J., Major, D., Weber, K. P., & Gerhard, J. I.(2020). Remediation of PFAS-contaminated soil and granular activated carbon by smoldering combustion. Environmental science & technology, 54(19), 12631-12640.
Ehrlich, V., Bil, W., Vandebriel, R. J., Granum, B., Luijten, M., Lindeman, B., Grandjean, P., Kaiser, A., Hauzenberger, I., Hartmann, C., Gundacker, C., & Uhl, M. (2023). Consideration of Pathways for Immunotoxicity of Per- And Polyfluoroalkyl Substances (PFAS). Environmental health, 22 (1).
Ehsan, M. N., Riza, M., Pervez, M. N., Li, C.-W., Zorpas, A. A., & Naddeo, V. (2024). PFAS contamination in soil and sediment: Contribution of sources and environmental impacts on soil biota. Case Studies in Chemical and Environmental Engineering, 100643.
EPA. (2016). Health Effects Support Document for Perfluorooctanoic Acid (PFOA). In: US EPA Washington, DC.
Evangelou, M. W. H., & Robinson, B. (2022). The Phytomanagement of PFAS-Contaminated Land. International Journal of Environmental Research and Public Health, 19 (11), 6817.
Felizeter, S., McLachlan, M. S., & De Voogt, P. (2014). Root uptake and translocation of perfluorinated alkyl acids by three hydroponically grown crops. Journal of agricultural and food chemistry, 62 (15), 3334-3342.
Fenton, S. E., Ducatman, A., Boobis, A., DeWitt, J. C., Lau, C., Ng, C., Smith, J. S., & Roberts, S. M. (2021). Per‐and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environmental Toxicology and Chemistry, 40 (3), 606-630.
Ferrario, C., Peruzzi, C., Cislaghi, A., Polesello, S., Lava, R., Zanon, F., Santovito, G., Barausse, A., & Bonato, M. (2022). Assessment of Reed Grasses (Phragmites Australis) Performance in PFAS Removal From Water: A Phytoremediation Pilot Plant Study. Water, 14 (6), 946.
Franko, J., Meade, B., Frasch, H. F., Barbero, A. M., & Anderson, S. E. (2012). Dermal penetration potential of perfluorooctanoic acid (PFOA) in human and mouse skin. Journal of Toxicology and Environmental Health, Part A, 75 (1), 50-62.
Fredriksson, F., Eriksson, U., Kärrman, A., & Yeung, L. W. (2022). Per-and polyfluoroalkyl substances (PFAS) in sludge from wastewater treatment plants in Sweden—first findings of novel fluorinated copolymers in Europe including temporal analysis. Science of the total environment, 846, 157406.
Fuertes, I., Gómez-Lavín, S., Elizalde, M. P., & Urtiaga, A. (2017). Perfluorinated alkyl substances (PFASs) in northern Spain municipal solid waste landfill leachates. Chemosphere, 168. 399-407.
Gaballah, S., Swank, A., Sobus, J. R., Howey, X. M., Schmid, J. E., Catron, T. R., McCord, J., Hines, E. P., Strynar, M. J., & Tal, T. (2020). Evaluation of Developmental Toxicity, Developmental Neurotoxicity, and Tissue Dose in Zebrafish Exposed to GenX and Other PFAS. Environmental health perspectives, 128 (4).
Gallen, C., Drage, D., Eaglesham, G., Grant, S., Bowman, M., & Mueller, J. (2017). Australia-wide assessment of perfluoroalkyl substances (PFASs) in landfill leachates. Journal of Hazardous Materials, 331, 132-141.
Gallen, C., Drage, D., Kaserzon, S., Baduel, C., Gallen, M., Banks, A., Broomhall, S., & Mueller, J. (2016). Occurrence and distribution of brominated flame retardants and perfluoroalkyl substances in Australian landfill leachate and biosolids. Journal of Hazardous Materials, 312, 55-64.
Gallen, C., Eaglesham, G., Drage, D., Nguyen, T. H., & Mueller, J. (2018). A mass estimate of perfluoroalkyl substance (PFAS) release from Australian wastewater treatment plants. Chemosphere, 208, 975-983.
Gao, Y., Liang, Y., Gao, K., Wang, Y., Wang, C., Fu, J., Wang, Y., Jiang, G., & Jiang, Y. (2019). Levels, spatial distribution and isomer profiles of perfluoroalkyl acids in soil, groundwater and tap water around a manufactory in China. Chemosphere, 227, 305-314.
Gewurtz, S. B., Backus, S. M., De Silva, A. O., Ahrens, L., Armellin, A., Evans, M., Fraser, S., Gledhill, M., Guerra, P., & Harner, T. (2013). Perfluoroalkyl acids in the Canadian environment: multi-media assessment of current status and trends. Environment international, 59, 183-200.
Giesy, J. P., & Kannan, K. (2001). Global distribution of perfluorooctane sulfonate in wildlife. Environmental science & technology, 35 (7), 1339-1342.
Glenn, G., Shogren, R., Jin, X., Orts, W., Hart‐Cooper, W., & Olson, L. (2021). Per‐and polyfluoroalkyl substances and their alternatives in paper food packaging. Comprehensive Reviews in Food Science and Food Safety, 20 (3), 2596-2625.
Gobelius, L., Hedlund, J., Dürig, W., Troger, R., Lilja, K., Wiberg, K., & Ahrens, L. (2018). Per-and polyfluoroalkyl substances in Swedish groundwater and surface water: implications for environmental quality standards and drinking water guidelines. Environmental science & technology, 52 (7), 4340-4349.
Gobelius, L., Lewis, J., & Ahrens, L. (2017a). Plant Uptake of Per- And Polyfluoroalkyl Substances at a Contaminated Fire Training Facility to Evaluate the Phytoremediation Potential of Various Plant Species. Environmental science & technology, 51 (21), 12602-12610.
Gobelius, L., Lewis, J., & Ahrens, L. (2017b). Plant uptake of per-and polyfluoroalkyl substances at a contaminated fire training facility to evaluate the phytoremediation potential of various plant species. Environmental science & technology, 51 (21), 12602-12610.
González-Alvarez, M. E., Antwi-Boasiako, C., & Keating, A. F. (2024). Effects of Per-and Polyfluoroalkylated Substances on Female Reproduction. Toxics, 12 (7), 455.
 Guo, H., Chen, J., Zhang, H., Yao, J., Sheng, N., Li, Q., Guo, Y., Wu, C., Xie, W., & Dai, J. (2022). Exposure to GenX and Its Novel Analogs Disrupts Hepatic Bile Acid Metabolism in Male Mice. Environmental science & technology, 56 (10), 6133-6143.
Grandjean, P., Heilmann, C., Weihe, P., Nielsen, F., Mogensen, U. B., Timmermann, A., & Budtz-Jørgensen, E. (2017). Estimated exposures to perfluorinated compounds in infancy predict attenuated vaccine antibody concentrations at age 5-years. Journal of immunotoxicology, 14 (1), 188-195.
Green, M. P., Shearer, C., Patrick, R., Kabiri, S., Rivers, N., & Nixon, B. (2024). The Perils of Poly- And Perfluorinated Chemicals on the Reproductive Health of Humans, Livestock, and Wildlife. Reproduction Fertility and Development, 36 (9).
Groffen, T., Eens, M., & Bervoets, L. (2019). Do concentrations of perfluoroalkylated acids (PFAAs) in isopods reflect concentrations in soil and songbirds? A study using a distance gradient from a fluorochemical plant. Science of the total environment, 657, 111-123.
Gu, Q., Wen, Y., Wu, H., & Cui, X. (2023). Uptake and translocation of both legacy and emerging per-and polyfluorinated alkyl substances in hydroponic vegetables. Science of the total environment, 862, 160684.
Guerra, P., Kim, M., Kinsman, L., Ng, T., Alaee, M., & Smyth, S. (2014). Parameters affecting the formation of perfluoroalkyl acids during wastewater treatment. Journal of Hazardous Materials, 272, 148-154.
Guillette, T. C., McCord, J., Guillette, M. P., Polera, M. E., Rachels, K. T., Morgeson, C., Kotlarz, N., Knappe, D. R. U., Reading, B. J., Strynar, M. J., & Belcher, S. M. (2020). Elevated Levels of Per- And Polyfluoroalkyl Substances in Cape Fear River Striped Bass (Morone Saxatilis) Are Associated With Biomarkers of Altered Immune and Liver Function. Environment international, 136, 105358.
Harrad, S., Drage, D. S., Sharkey, M., & Berresheim, H. (2019). Brominated flame retardants and perfluoroalkyl substances in landfill leachate from Ireland. Science of the total environment, 695, 133810.
Heimstad, E. S., Nygård, T., Herzke, D., & Bohlin-Nizzetto, P. (2018). Environmental pollutants in the terrestrial and urban environment 2017. NILU rapport.
Helmer, R. W., Reeves, D. M., & Cassidy, D. P. (2022). Per-and Polyfluorinated Alkyl Substances (PFAS) cycling within Michigan: Contaminated sites, landfills and wastewater treatment plants. Water research, 210, 117983.
Higgins, C. P., & Luthy, R. G. (2006). Sorption of perfluorinated surfactants on sediments. Environmental science & technology, 40 (23), 7251-7256.
Huang, S., & Jaffé, P. R. (2019). Defluorination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by Acidimicrobium sp. strain A6. Environmental science & technology, 53 (19), 11410-11419.
Huang, X., Wei, X., Liu, H., Li, W., Shi, D., Qian, S., Sun, W., Yue, D., & Wang, X. (2022). Occurrence of per-and polyfluoroalkyl substances (PFAS) in municipal solid waste landfill leachates from western China. Environmental Science and Pollution Research, 29 (46), 69588-69598.
Huang, Y.-R., Liu, S.-S., Zi, J.-X., Cheng, S.-M., Li, J., Ying, G.-G., & Chen, C.-E. (2023). In situ insight into the availability and desorption kinetics of per-and polyfluoroalkyl substances in soils with diffusive gradients in thin films. Environmental science & technology, 57 (20), 7809-7817.
Huset, C. A., Barlaz, M. A., Barofsky, D. F., & Field, J. A. (2011). Quantitative determination of fluorochemicals in municipal landfill leachates. Chemosphere, 82 (10), 1380-1386.
Ji, Y., Choi, Y. J., Fang, Y., Pham, H. S., Nou, A. T., Lee, L., Niu, J., & Warsinger, D. M. (2023). Electric Field-Assisted Nanofiltration for PFOA Removal With Exceptional Flux, Selectivity, and Destruction. Environmental science & technology, 57 (47), 18519-18528.
Jin, B., Liu, H., Che, S., Gao, J., Yu, Y., Liu, J., & Men, Y. (2023). Substantial defluorination of polychlorofluorocarboxylic acids triggered by anaerobic microbial hydrolytic dechlorination. Nature water, 1 (5), 451-461.
Jin, H., Zhang, Y., Zhu, L., & Martin, J. W. (2015). Isomer Profiles of Perfluoroalkyl Substances in Water and Soil Surrounding a Chinese Fluorochemical Manufacturing Park. Environmental science & technology, 49 (8), 4946-4954.
Joerss, H., Xie, Z., Wagner, C. C., Appen, W. J. v., Sunderland, E. M., & Ebinghaus, R. (2020). Transport of Legacy Perfluoroalkyl Substances and the Replacement Compound HFPO-DA Through the Atlantic Gateway to the Arctic Ocean—Is the Arctic a Sink or a Source? Environmental science & technology, 54 (16), 9958-9967.
Jouanneau, W., Bårdsen, B. J., Herzke, D., Johnsen, T. V., Eulaers, I., & Bustnes, J. O. (2020). Spatiotemporal Analysis of Perfluoroalkyl Substances in White-Tailed Eagle (<i>Haliaeetus Albicilla</I><i>)</I> Nestlings From Northern Norway—A Ten-Year Study. Environmental science & technology, 54 (8), 5011-5020.
Kallenborn, R. (2004). Perfluorinated alkylated substances (PFAS) in the Nordic environment. Nordic Council of Ministers.
Kato, K., Wong, L.-Y., Jia, L. T., Kuklenyik, Z., & Calafat, A. M. (2011). Trends in exposure to polyfluoroalkyl chemicals in the US population: 1999− 2008. Environmental science & technology, 45 (19), 8037-8045.
Keawmanee, S., Piyaviriyakul, P., Boontanon, N., Waiyarat, S., Sukeesan, S., Kongpran, J., & Boontanon, S. K. (2024). Concentration and health risk assessment of per-and polyfluoroalkyl substances in cosmetic and personal care products. Journal of Environmental Science and Health, Part B, 59 (9), 551-561.
Khair Biek, S., Khudur, L. S., Rigby, L., Singh, N., Askeland, M., & Ball, A. S. (2024). Assessing the impact of immobilisation on the bioavailability of PFAS to plants in contaminated Australian soils. Environmental Science and Pollution Research, 31 (13), 20330-20342.
Kikuchi, J., Wiberg, K., Stendahl, J., & Ahrens, L. (2018). Analysis of per- and polyfluoroalkyl substances (PFASs) in soil from Swedish background sites.
Kim, E. J., Park, Y.-M., Park, J.-E., & Kim, J.-g. (2014). Distributions of new Stockholm Convention POPs in soils across South Korea. Science of the total environment, 476, 327-335.
Kim, H., Ekpe, O. D., Lee, J.-H., Kim, D.-H., & Oh, J.-E. (2019). Field-scale evaluation of the uptake of Perfluoroalkyl substances from soil by rice in paddy fields in South Korea. Science of the total environment, 671, 714-721.
Kim, M. H., Wang, N., & Chu, K. H. (2014). 6: 2 Fluorotelomer alcohol (6: 2 FTOH) biodegradation by multiple microbial species under different physiological conditions. Applied microbiology and biotechnology, 98, 1831-1840.
Kim, S.-K., Im, J.-K., Kang, Y.-M., Jung, S.-Y., Kho, Y. L., & Zoh, K.-D. (2012). Wastewater treatment plants (WWTPs)-derived national discharge loads of perfluorinated compounds (PFCs). Journal of Hazardous Materials, 201, 82-91.
Kim, S.-K., Lee, K. T., Kang, C. S., Tao, L., Kannan, K., Kim, K.-R., Kim, C.-K., Lee, J. S., Park, P. S., & Yoo, Y. W. (2011). Distribution of perfluorochemicals between sera and milk from the same mothers and implications for prenatal and postnatal exposures. Environmental Pollution, 159 (1), 169-174.
Kissa, E., & Kissa, E. (2001). Fluorinated surfactants and repellents, Marcel Dekker. New York.[Google Scholar].
Knutsen, H., Mæhlum, T., Haarstad, K., Slinde, G. A., & Arp, H. P. H. (2019). Leachate emissions of short-and long-chain per-and polyfluoralkyl substances (PFASs) from various Norwegian landfills. Environmental Science: Processes & Impacts, 21 (11), 1970-1979.
Kookana, R. S., Navarro, D. A., Kabiri, S., & McLaughlin, M. J. (2022). Key properties governing sorption–desorption behaviour of poly-and perfluoroalkyl substances in saturated and unsaturated soils: a review. Soil Research, 61 (2), 107-125.
Kosiarski, K., Usner, C., & Preisendanz, H. E. (2025). From wastewater to feed: Understanding per‐and polyfluoroalkyl substances occurrence in wastewater‐irrigated crops 54 (1), 66-79).
Kunacheva, C., Tanaka, S., Fujii, S., Boontanon, S. K., Musirat, C., Wongwattana, T., & Shivakoti, B. R. (2011). Mass flows of perfluorinated compounds (PFCs) in central wastewater treatment plants of industrial zones in Thailand. Chemosphere, 83 (6), 737-744.
Kurwadkar, S., Dane, J., Kanel, S. R., Nadagouda, M. N., Cawdrey, R. W., Ambade, B., Struckhoff, G. C., & Wilkin, R. (2022). Per-and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Science of the total environment, 809, 151003.
Kwiatkowski, C. F., Andrews, D. Q., Birnbaum, L. S., Bruton, T. A., DeWitt, J. C., Knappe, D. R., Maffini, M. V., Miller, M. F., Pelch, K. E., & Reade, A. (2020). Scientific basis for managing PFAS as a chemical class. Environmental Science & Technology Letters, 7 (8), 532-543.
Kwon, B. G., Lim, H.-J., Na, S.-H., Choi, B.-I., Shin, D.-S., & Chung, S.-Y. (2014). Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant. Chemosphere, 109, 221-225.
Kwon, H.-O., Kim, H.-Y., Park, Y.-M., Seok, K.-S., Oh, J.-E., & Choi, S.-D. (2017). Updated national emission of perfluoroalkyl substances (PFASs) from wastewater treatment plants in South Korea. Environmental Pollution, 220, 298-306.
Lakshminarasimman, N., Gewurtz, S. B., Parker, W. J., & Smyth, S. A. (2021). Removal and formation of perfluoroalkyl substances in Canadian sludge treatment systems–A mass balance approach. Science of the total environment, 754, 142431.
Lang, J. R., Allred, B. M., Field, J. A., Levis, J. W., & Barlaz, M. A. (2017). National estimate of per-and polyfluoroalkyl substance (PFAS) release to US municipal landfill leachate. Environmental science & technology, 51 (4), 2197-2205.
Letcher, R. J., Chu, S., & Smyth, S.-A. (2020). Side-chain fluorinated polymer surfactants in biosolids from wastewater treatment plants. Journal of Hazardous Materials, 388, 122044.
Li, B. (2011). Perfluorinated compounds in landfill leachate and their effect on the performance of sodium bentonite landfill liners University of British Columbia].
Li, F., Zhang, C., Qu, Y., Chen, J., Chen, L., Liu, Y., & Zhou, Q. (2010). Quantitative characterization of short- and long-chain perfluorinated acids in solid matrices in Shanghai, China. Science of the total environment, 408 (3), 617-623.
Li, J., Sun, J., & Li, P. (2022). Exposure routes, bioaccumulation and toxic effects of per-and polyfluoroalkyl substances (PFASs) on plants: A critical review. Environment international, 158, 106891.
Li, L., Han, T., Li, B., Bai, P., Tang, X., & Zhao, Y. (2024). Distribution Control and Environmental Fate of PFAS in the Offshore Region Adjacent to the Yangtze River Estuary─A Study Combining Multiple Phases Analysis. Environmental science & technology.
Li, P., Oyang, X., Zhao, Y., Tu, T., Tian, X., Li, L., Zhao, Y., Li, J., & Xiao, Z. (2019). Occurrence of perfluorinated compounds in agricultural environment, vegetables, and fruits in regions influenced by a fluorine-chemical industrial park in China. Chemosphere, 225, 659-667.
Li, R., Tang, T., Qiao, W., & Huang, J. (2020). Toxic effect of perfluorooctane sulfonate on plants in vertical-flow constructed wetlands. Journal of Environmental Sciences, 92, 176-186.
Libenson, A., Karasaki, S., Cushing, L. J., Tran, T., Rempel, J. L., Morello-Frosch, R., & Pace, C. E. (2024). PFAS-Contaminated Pesticides Applied near Public Supply Wells Disproportionately Impact Communities of Color in California. Acs Es&T Water.
Liddie, J. M., Schaider, L. A., & Sunderland, E. M. (2023). Sociodemographic factors are associated with the abundance of PFAS sources and detection in US community water systems. Environmental science & technology, 57 (21), 7902-7912.
Link, G. W., Reeves, D. M., Cassidy, D. P., & Coffin, E. S. (2024). Per-and polyfluoroalkyl substances (PFAS) in final treated solids (biosolids) from 190 Michigan wastewater treatment plants. Journal of Hazardous Materials, 463 (132734).
Liu, T., Hu, L.-X., Han, Y., Dong, L.-L., Wang, Y.-Q., Zhao, J.-H., Liu, Y.-S., Zhao, J.-L., & Ying, G.-G. (2022). Non-target and target screening of per-and polyfluoroalkyl substances in landfill leachate and impact on groundwater in Guangzhou, China. Science of the total environment, 844, 157021.
Liu, Y., Robey, N. M., Bowden, J. A., Tolaymat, T. M., da Silva, B. F., Solo-Gabriele, H. M., & Townsend, T. G. (2020). From waste collection vehicles to landfills: Indication of per-and polyfluoroalkyl substance (PFAS) transformation. Environmental Science & Technology Letters, 8 (1), 66-72.
Liu, Z., Lu, Y., Shi, Y., Wang, P., Jones, K., Sweetman, A. J., Johnson, A. C., Zhang, M., Zhou, Y., Lu, X., Su, C., Sarvajayakesavaluc, S., & Khan, K. (2017). Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China. Environment international, 106, 37-47.
Lotlikar, O. (2022). PFAS Degradation Techniques – A Road Towards Alleviating Organic Pollution. International Journal of Current Science Research and Review, 05 (10).
Ma, R., & Shih, K. (2010). Perfluorochemicals in wastewater treatment plants and sediments in Hong Kong. Environmental Pollution, 158 (5), 1354-1362.
Marchetto, F., Roverso, M., Righetti, D., Bogialli, S., Filippini, F., Bergantino, E., & Sforza, E. (2021). Bioremediation of per-and poly-fluoroalkyl substances (PFAS) by Synechocystis sp. PCC 6803: A chassis for a synthetic biology approach. Life, 11 (12), 1300.
Meng, J., Wang, T., Song, S., Wang, P., Li, Q., Zhou, Y., & Lu, Y. (2018). Tracing perfluoroalkyl substances (PFASs) in soils along the urbanizing coastal area of Bohai and Yellow Seas, China. Environmental Pollution, 238, 404-412.
Meng, J., Wang, T., Wang, P., Giesy, J. P., & Lu, Y. (2013). Perfluorinated compounds and organochlorine pesticides in soils around Huaihe River: a heavily contaminated watershed in Central China. Environmental Science and Pollution Research, 20 (6), 3965-3974.
Meng, J., Wang, T., Wang, P., Zhang, Y., Li, Q., Lu, Y., & Giesy, J. P. (2015). Are levels of perfluoroalkyl substances in soil related to urbanization in rapidly developing coastal areas in North China? Environmental Pollution, 199, 102-109.
Michigan Department of Environment, G. L., and Energy.(2020). Initiatives to Evaluate the Prese of PFAS in Municipal Wastewater and Associated Residuals (Sludge/Biosolids) in Michigan.
Michigan Department of Environment, G. L., and Energy (EGLE),. (2022). Biosolids and PFAS: quick facts for landowners/farmers. Available at: . https://www.mainepublic.org/environment-and-outdoors/2022-02-07/complete-crisisas-pfas-discovery-upends-life-and-livelihood-of-young-maine-farming-family
Moodie, D., Coggan, T., Berry, K., Kolobaric, A., Fernandes, M., Lee, E., Reichman, S., Nugegoda, D., & Clarke, B. O. (2021). Legacy and emerging per-and polyfluoroalkyl substances (PFASs) in Australian biosolids. Chemosphere, 270, 129143.
Morales‐McDevitt, M., Dunn, M., Habib, A., Vojta, Š., Bečanová, J., & Lohmann, R. (2021). Poly- And Perfluorinated Alkyl Substances in Air and Water From Dhaka, Bangladesh. Environmental Toxicology and Chemistry, 41 (2), 334-342.
Munoz, G., Budzinski, H., Babut, M., Drouineau, H., Lauzent, M., Ménach, K. L., Lobry, J., Selleslagh, J., Simonnet-Laprade, C., & Labadie, P. (2017). Evidence for the Trophic Transfer of Perfluoroalkylated Substances in a Temperate Macrotidal Estuary. Environmental science & technology, 51 (15), 8450-8459.
Munoz, G., Michaud, A. M., Liu, M., Vo Duy, S., Montenach, D., Resseguier, C., Watteau, F., Sappin-Didier, V., Feder, F., & Morvan, T. (2021). Target and nontarget screening of PFAS in biosolids, composts, and other organic waste products for land application in France. Environmental science & technology, 56 (10), 6056-6068.
MWRA, M. (2019). waste & recycling association statewide study on landfill leachate PFOA and PFOS impact on water resource recovery facility influent.
Naile, J. E., Khim, J. S., Hong, S., Park, J., Kwon, B.-O., Ryu, J. S., Hwang, J. H., Jones, P. D., & Giesy, J. P. (2013). Distributions and bioconcentration characteristics of perfluorinated compounds in environmental samples collected from the west coast of Korea. Chemosphere, 90 (2), 387-394.
Naile, J. E., Khim, J. S., Wang, T., Chen, C., Luo, W., Kwon, B.-O., Park, J., Koh, C.-H., Jones, P. D., Lu, Y., & Giesy, J. P. (2010). Perfluorinated compounds in water, sediment, soil and biota from estuarine and coastal areas of Korea. Environmental Pollution, 158 (5), 1237-1244.
Nakayama, S. F., Yoshikane, M., Onoda, Y., Nishihama, Y., Iwai-Shimada, M., Takagi, M., Kobayashi, Y., & Isobe, T. (2019). Worldwide trends in tracing poly-and perfluoroalkyl substances (PFAS) in the environment. TrAC Trends in Analytical Chemistry, 121, 115410.
Nason, S. L., Stanley, C., PeterPaul, C. E., Blumenthal, M. F., Zuverza‐Mena, N., & Silliboy, R. J. (2021). A Community Based PFAS Phytoremediation Project at the Former Loring Airforce Base. Iscience, 24(7), 102777.
Nason, S. L., Thomas, S., Stanley, C., Silliboy, R., Blumenthal, M., Zhang, W., Liang, Y., Jones, J. P., Zuverza-Mena, N., & White, J. C. (2024). A comprehensive trial on PFAS remediation: hemp phytoextraction and PFAS degradation in harvested plants. Environmental Science: Advances, 3 (2), 304-313.
Nason, S. L., Thomas, S., Stanley, C., Silliboy, R., Blumenthal, M., Zhang, W., Liang, Y., Jones, J. P., Zuverza-Mena, N., White, J. C., Haynes, C. L., Vasiliou, V., Timko, M. P., & Berger, B. W. (2024). A comprehensive trial on PFAS remediation: hemp phytoextraction and PFAS degradation in harvested plants [10.1039/D3VA00340J]. Environmental Science: Advances, 3 (2), 304-313.
Nassazzi, W. (2023). Phytoremediation of soil contaminated with per-and polyfluoroalkyl substances (PFAS). Acta Universitatis Agriculturae Sueciae, (2023: 62).
Navarro, I., Sanz, P., & Martínez, M. Á. (2011). Analysis of perfluorinated alkyl substances in Spanish sewage sludge by liquid chromatography–tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 400, 1277-1286.
Nelson, M. B., Martiny, A. C., & Martiny, J. B. (2016). Global biogeography of microbial nitrogen-cycling traits in soil. Proceedings of the National Academy of Sciences, 113 (29), 8033-8040.
NEMP. (2020). PFAS national environmental management plan, Australia. Department of Climate Change, Energy, the Environment and Water. https://www.dcceew.gov.au/environment/protection/publications/pfas-nemp-2
Newland, A., Khyum, M., Halamek, J., & Ramkumar, S. (2023). Perfluoroalkyl and polyfluoroalkyl substances (PFAS)—Fibrous substrates. TAPPI J, 22 (9), 559-572.
Niarchos, G., Ahrens, L., Kleja, D. B., Leonard, G., Forde, J., Bergman, J., Ribeli, E., Schütz, M., & Fagerlund, F. (2023). In‐situ application of colloidal activated carbon for PFAS‐contaminated soil and groundwater: A Swedish case study. Remediation Journal, 33 (2), 101-110.
Nicole. (2016). Environmental fate and effects of poly- and perfluoroalkyl substances (PFAS). Available at : . ARCADIS. https://www.concawe.eu/wp-content/uploads/2016/06/Rpt_16-8.pdf
Nihemaiti, M., Huynh, N., Mailler, R., Mèche-Ananit, P., Rocher, V., Barhdadi, R., Moilleron, R., & Roux, J. L. (2022). High-Resolution Mass Spectrometry Screening of Wastewater Effluent for Micropollutants and Their Transformation Products During Disinfection With Performic Acid. Acs Es&T Water, 2 (7), 1225-1233.
Ofoegbu, P. C., Wagner, D. C., Abolade, O., Clubb, P., Dobbs, Z., Sayers, I., Zenobio, J. E., Adeleye, A. S., & Rico, C. M. (2022). Impacts of perfluorooctanesulfonic acid on plant biometrics and grain metabolomics of wheat (Triticum aestivum L.). Journal of Hazardous Materials Advances, 7, 100131.
Olshansky, Y., Gomeniuc, A., Chorover, J., Abrell, L., Field, J. A., Hatton, J., He, J., & Sierra-Alvarez, R. (2022). Tailored polyanilines are high-affinity adsorbents for per-and polyfluoroalkyl substances. Acs Es&T Water, 2 (8), 1402-1410.
Ordonez, D., Valencia, A., Sadmani, A. A., & Chang, N.-B. (2022). Green sorption media for the removal of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) from water. Science of the total environment, 819, 152886.
Palmer, K., Bangma, J. T., Reiner, J. L., Bonde, R. K., Korte, J. E., Boggs, A. S. P., & Bowden, J. A. (2019). Per- And Polyfluoroalkyl Substances (PFAS) in Plasma of the West Indian Manatee (Trichechus Manatus). Marine Pollution Bulletin, 140, 610-615.
Panieri, E., Baralic, K., Djukic-Cosic, D., Buha Djordjevic, A., & Saso, L. (2022). PFAS molecules: a major concern for the human health and the environment. Toxics, 10 (2), 44.
Panieri, E., Baralić, K., Đukić-Ćosić, D., Đorđević, A., & Saso, L. (2022). PFAS Molecules: A Major Concern for the Human Health and the Environment. Toxics, 10 (2), 44.
Perkola, N., & Sainio, P. (2013). Survey of perfluorinated alkyl acids in Finnish effluents, storm water, landfill leachate and sludge. Environmental Science and Pollution Research, 20, 7979-7987.
Pitter, G., Zare Jeddi, M., Barbieri, G., Gion, M., Fabricio, A. S., Daprà, F., Russo, F., Fletcher, T., & Canova, C. (2020). Perfluoroalkyl substances are associated with elevated blood pressure and hypertension in highly exposed young adults. Environmental health, 19, 1-11.
Ramírez Carnero, A., Lestido-Cardama, A., Vazquez Loureiro, P., Barbosa-Pereira, L., Rodríguez Bernaldo de Quirós, A., & Sendón, R. (2021). Presence of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in food contact materials (FCM) and its migration to food. Foods, 10 (7), 1443.
Rankin, K., Mabury, S. A., Jenkins, T. M., & Washington, J. W. (2016). A North American and global survey of perfluoroalkyl substances in surface soils: Distribution patterns and mode of occurrence. Chemosphere, 161, 333-341.
Riva, F., Zuccato, E., Pacciani, C., Colombo, A., & Castiglioni, S. (2021). A multi-residue analytical method for extraction and analysis of pharmaceuticals and other selected emerging contaminants in sewage sludge. Analytical Methods, 13 (4), 526-535.
Robarts, D. R., Dai, J., Lau, C., Apte, U., & Corton, J. C. (2023). Hepatic Transcriptome Comparative in Silico Analysis Reveals Similar Pathways and Targets Altered by Legacy and Alternative Per- And Polyfluoroalkyl Substances in Mice. Toxics, 11 (12), 963. https://doi.org/10.3390/toxics11120963
Robey, N. M., da Silva, B. F., Annable, M. D., Townsend, T. G., & Bowden, J. A. (2020). Concentrating per-and polyfluoroalkyl substances (PFAS) in municipal solid waste landfill leachate using foam separation. Environmental science & technology, 54 (19), 12550-12559.
Ruan, T., Lin, Y., Wang, T., Liu, R., & Jiang, G. (2015). Identification of novel polyfluorinated ether sulfonates as PFOS alternatives in municipal sewage sludge in China. Environmental science & technology, 49 (11), 6519-6527.
Saliu, T. D., & Sauvé, S. (2024). A review of per-and polyfluoroalkyl substances in biosolids: geographical distribution and regulations. Frontiers in Environmental Chemistry, 5, 1383185.
Salvatore, D., Mok, K., Garrett, K. K., Poudrier, G., Brown, P., Birnbaum, L. S., Goldenman, G., Miller, M. F., Patton, S., & Poehlein, M. (2022). Presumptive contamination: a new approach to PFAS contamination based on likely sources. Environmental Science & Technology Letters, 9 (11), 983-990.
Schaefer, C. E., Hooper, J. L., Strom, L. E., Abusallout, I., Dickenson, E. R., Thompson, K. A., Mohan, G. R., Drennan, D., Wu, K., & Guelfo, J. L. (2023). Occurrence of quantifiable and semi-quantifiable poly-and perfluoroalkyl substances in united states wastewater treatment plants. Water research, 233, 119724.
Scher, D. P., Kelly, J. E., Huset, C. A., Barry, K. M., Hoffbeck, R. W., Yingling, V. L., & Messing, R. B. (2018). Occurrence of perfluoroalkyl substances (PFAS) in garden produce at homes with a history of PFAS-contaminated drinking water. Chemosphere, 196, 548-555.
Schumm, C. E., Loganathan, N., & Wilson, A. K. (2023). Influence of Soil Minerals on the Adsorption, Structure, and Dynamics of GenX. Acs Es&T Water, 3 (8), 2659-2670.
Sen, P., Qadri, S., Luukkonen, P. K., Ragnarsdottir, O., McGlinchey, A., Jäntti, S., Juuti, A., Arola, J., Schlezinger, J. J., & Webster, T. F. (2022). Exposure to environmental contaminants is associated with altered hepatic lipid metabolism in non-alcoholic fatty liver disease. Journal of hepatology, 76 (2), 283-293.
Seo, S.-H., Son, M.-H., Shin, E.-S., Choi, S.-D., & Chang, Y.-S. (2019). Matrix-specific distribution and compositional profiles of perfluoroalkyl substances (PFASs) in multimedia environments. Journal of Hazardous Materials, 364, 19-27.
Shahsavari, E., Rouch, D., Khudur, L. S., Thomas, D., Aburto-Medina, A., & Ball, A. S. (2021) .Challenges and current status of the biological treatment of PFAS-contaminated soils. Frontiers in Bioengineering and Biotechnology, 8, 602040.
Shan, G., Wei, M., Zhu, L., Liu, Z., & Zhang, Y. (2014). Concentration profiles and spatial distribution of perfluoroalkyl substances in an industrial center with condensed fluorochemical facilities. Science of the total environment, 490, 351-359.
Shaw, D. M., Munoz, G., Bottos, E. M., Duy, S. V., Sauvé, S., Liu, J., & Van Hamme, J. D. (2019). Degradation and defluorination of 6: 2 fluorotelomer sulfonamidoalkyl betaine and 6: 2 fluorotelomer sulfonate by Gordonia sp. strain NB4-1Y under sulfur-limiting conditions. Science of the total environment, 647, 690-698.
Shittu, A. (2021). Toxicity Studies Of Per-and Polyfluoroalkyl Substances (PFAS). Bowling Green State University.
Shittu, A. R., Iwaloye, O. F., Ojewole, A. E., Rabiu, A. G., Amechi, M. O., & Herve, O. F. (2023). The effects of per-and polyfluoroalkyl substances on environmental and human microorganisms and their potential for bioremediation. Archives of Industrial Hygiene and Toxicology, 74 (3), 167-178.
Simmons, N. (2019, September). PFAS concentrations of landfill leachates in Victoria, Australia-implications for discharge of leachate to sewer. In Sardinia Symposium.
Sindiku, O., Orata, F., Weber, R., & Osibanjo, O. (2013). Per-and polyfluoroalkyl substances in selected sewage sludge in Nigeria. Chemosphere, 92 (3), 329-335.
Sinha, S., Chaturvedi, A., Gautam, R. K., & Jiang, J. J. (2023). Molecular Cu electrocatalyst escalates ambient perfluorooctanoic acid degradation. Journal of the American Chemical Society, 145 (50), 27390-27396.
Skaar, J. S., Ræder, E. M., Lyche, J. L., Ahrens, L., & Kallenborn, R. (2019). Elucidation of contamination sources for poly- and perfluoroalkyl substances (PFASs) on Svalbard (Norwegian Arctic). Environmental Science and Pollution Research, 26 (8), 7356-7363.
Smallwood, T. J., Robey, N. M., Liu, Y., Bowden, J. A., Tolaymat, T. M., Solo-Gabriele, H. M., & Townsend, T. G. (2023). Per-and polyfluoroalkyl substances (PFAS) distribution in landfill gas collection systems: leachate and gas condensate partitioning. Journal of Hazardous Materials, 448, 130936.
Solo-Gabriele, H. M., Jones, A. S., Lindstrom, A. B., & Lang, J. R. (2020). Waste type, incineration, and aeration are associated with per-and polyfluoroalkyl levels in landfill leachates. Waste Management, 107, 191-200.
Sörengård, M., Lindh, A., & Ahrens, L. (2020). Thermal desorption as a high removal remediation technique for soils contaminated with per-and polyfluoroalkyl substances (PFASs). PloS one, 15 (6), e0234476.
Stahl, T., Gassmann, M., Falk, S., & Brunn, H. (2018). Concentrations and distribution patterns of perfluoroalkyl acids in sewage sludge and in biowaste in Hesse, Germany. Journal of agricultural and food chemistry, 66 (39), 10147-10153.
Steenland, K., Fletcher, T., & Savitz, D. A. (2010). Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environmental health perspectives, 118 (8), 1100-1108.
Steindal, E. H., & Grung, M. (2020). Management of PFAS with the aid of chemical product registries—an indispensable tool for future control of hazardous substances. Integrated environmental assessment and management, 17 (4), 835-851.
Su, H., Lu, Y., Wang, P., Shi, Y., Li, Q., Zhou, Y., & Johnson, A. C. (2016). Perfluoroalkyl acids (PFAAs) in indoor and outdoor dusts around a mega fluorochemical industrial park in China: implications for human exposure. Environment international, 94, 667-673.
Sun, Y., Wang, T., Peng, X., Wang, P., & Lu, Y. (2016). Bacterial community compositions in sediment polluted by perfluoroalkyl acids (PFAAs) using Illumina high-throughput sequencing. Environmental Science and Pollution Research, 23, 10556-10565.
Suski, J. G., Chanov, M. K., Heron, C., Field, J. A., & Salice, C. J. (2023). Ecotoxicity and Accumulation of Perfluorononanoic Acid in the Fathead Minnow (<i>Pimephales Promelas</I>) and an Approach to Developing Protective Thresholds in the Aquatic Environment Through Species Sensitivity Distribution. Environmental Toxicology and Chemistry, 42 (10), 2229-2236.
Swedishepa. (2017). Sahlin  Available at:. http://www.swedishepa.se/hazards
Tan, B., Wang, T., Wang, P., Luo, W., Lu, Y., Romesh, K. Y., & Giesy, J. P. (2014). Perfluoroalkyl substances in soils around the Nepali Koshi River: levels, distribution, and mass balance. Environmental Science and Pollution Research, 21 (15), 9201-9211.
Tavasoli, E., Luek, J. L., Malley, J. P., & Mouser, P. J. (2021). Distribution and fate of per-and polyfluoroalkyl substances (PFAS) in wastewater treatment facilities. Environmental Science: Processes & Impacts, 23 (6), 903-913.
The Dutch National Institute for Public Health and the Environment. (2019). Nitrogen and PFAS suddenly big societal issues in The Netherlands. Available at:. https://www.rivm.nl/en/newsletter/content/2020/issue1/nitrogen-pfas-in-NL
Thompson, K. A., Mortazavian, S., Gonzalez, D. J., Bott, C., Hooper, J., Schaefer, C. E., & Dickenson, E. R. (2022). Poly-and perfluoroalkyl substances in municipal wastewater treatment plants in the United States: seasonal patterns and meta-analysis of long-term trends and average concentrations. Acs Es&T Water, 2 (5), 690-700.
Tolaymat, T., Robey, N., Krause, M., Larson, J., Weitz, K., Parvathikar, S., Phelps, L., Linak, W., Burden, S., & Speth, T. (2023). A critical review of perfluoroalkyl and polyfluoroalkyl substances (PFAS) landfill disposal in the United States. Science of the total environment, 167185.
Toms, L.-M., Thompson, J., Rotander, A., Hobson, P., Calafat, A., Kato, K., Ye, X., Broomhall, S., Harden, F., & Mueller, J. (2014). Decline in perfluorooctane sulfonate and perfluorooctanoate serum concentrations in an Australian population from 2002 to 2011. Environment international, 71, 74-80.
Ulrich, H., Freier, K. P., & Gierig, M. (2016). Getting on with persistent pollutants: Decreasing trends of perfluoroalkyl acids (PFAAs) in sewage sludge. Chemosphere, 161, 527-535.
Venkatesan, A. K., & Halden, R. U. (2013). National inventory of perfluoroalkyl substances in archived US biosolids from the 2001 EPA National Sewage Sludge Survey. Journal of Hazardous Materials, 252, 413-418.
Verner, M.-A., Loccisano, A. E., Morken, N.-H., Yoon, M., Wu, H., McDougall, R., Maisonet, M., Marcus, M., Kishi, R., & Miyashita, C. (2015). Associations of perfluoroalkyl substances (PFAS) with lower birth weight: an evaluation of potential confounding by glomerular filtration rate using a physiologically based pharmacokinetic model (PBPK). Environmental health perspectives, 123 (12), 1317-1324.
Wang, P., Wang, T., Giesy, J. P., & Lu, Y. (2013). Perfluorinated compounds in soils from Liaodong Bay with concentrated fluorine industry parks in China. Chemosphere, 91 (6), 751-757.
Wang, Q., Zhao, Z., Ruan, Y., Li, J., Sun, H., & Zhang, G. (2018). Occurrence and distribution of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in natural forest soils: A nationwide study in China. Science of the total environment, 6 (45), 596-602.
Wang, W., Rhodes, G., Ge, J., Yu, X., & Li, H. (2020). Uptake and accumulation of per-and polyfluoroalkyl substances in plants. Chemosphere, 261, 127584.
Wang, Y., Fu, J., Wang, T., Liang, Y., Pan, Y., Cai, Y., & Jiang, G. (2010). Distribution of Perfluorooctane Sulfonate and Other Perfluorochemicals in the Ambient Environment around a Manufacturing Facility in China. Environmental science & technology, 44 (21), 8062-8067.
Wang, Y., Munir, U., & Huang, Q. (2023). Occurrence of per- and polyfluoroalkyl substances (PFAS) in soil: Sources, fate, and remediation. Soil & Environmental Health, 1 (1), 100004.
Wang, Z., DeWitt, J. C., Higgins, C. P., & Cousins, I. T. (2017). A never-ending story of per-and polyfluoroalkyl substances (PFASs)? In: ACS Publications. 2508-2518.
Weatherly, L. M., Shane, H. L., Jackson, L. G., Lukomska, E., Baur, R., Cooper, M. P., & Anderson, S. E. (2024). Systemic and Immunotoxicity Induced by Topical Application of Perfluoroheptane Sulfonic Acid (PFHpS) or Perfluorooctane Sulfonic Acid (PFOS) in a Murine Model. Journal of immunotoxicology, 21 (1).
WHO. (2024). World Health Organization. Per- and polyfluoroalkyl substances (PFAS). Water Sanitation and Health. Retrieved December 25, 2024, from https://www.who.int/teams/environment-climate-change-and-health/water-sanitation-and-health/chemical-hazards-in-drinking-water/per-and-polyfluoroalkyl-substances
Wu, E., Wang, K., Liu, Z., Wang, J., Yan, H., Zhu, X., Zhu, X., & Chen, B. (2023). Metabolic and Microbial Profiling of Soil Microbial Community under Per-and Polyfluoroalkyl Substance (PFAS) Stress. Environmental science & technology, 57 (51), 21855-21865.
Xia, C., Capozzi, S. L., Romanak, K. A., Lehman, D. C., Dove, A., Richardson, V., Greenberg, T., McGoldrick, D., & Venier, M. (2024). The Ins and Outs of Per- And Polyfluoroalkyl Substances in the Great Lakes: The Role of Atmospheric Deposition. Environmental science & technology, 58 (21), 9303-9313.
Xiao, F., Simcik, M. F., Halbach, T. R., & Gulliver, J. S. (2015). Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a U.S. metropolitan area: Migration and implications for human exposure. Water research, 72, 64-74.
Xie, Y., Ramirez, D., Chen, G., He, G., Sun, Y., Murdoch, F. K., & Löffler, F. E. (2023). Genome-wide expression analysis unravels fluoroalkane metabolism in Pseudomonas sp. Strain 273. Environmental science & technology, 57 (42), 15925-15935.
Xu, B., Yang, G., Lehmann, A., Riedel, S., & Rillig, M. C. (2023). Effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) on soil structure and function. Soil Ecology Letters, 5 (1), 108-117.
Yan, H., Cousins, I. T., Zhang, C., & Zhou, Q. (2015). Perfluoroalkyl acids in municipal landfill leachates from China: Occurrence, fate during leachate treatment and potential impact on groundwater. Science of the total environment, 524, 23-31.
Yan, N., Ji, Y., Zhang, B., Zheng, X., & Brusseau, M. L. (2020). Transport of GenX in saturated and unsaturated porous media. Environmental science & technology, 54 (19), 11876-11885.
Yi, L., Chai, L., Xie, Y., Peng, Q., & Peng, Q. (2016). Isolation, identification, and degradation performance of a PFOA-degrading strain. Genet. Mol. Res, 15 (2), 235-246.
Yin, T., Chen, H., Reinhard, M., Yi, X., He, Y., & Gin, K. Y.-H. (2017). Perfluoroalkyl and polyfluoroalkyl substances removal in a full-scale tropical constructed wetland system treating landfill leachate. Water research, 125, 418-426.
Yu, Y., Che, S., Ren, C., Jin, B., Tian, Z., Liu, J., & Men, Y. (2022). Microbial defluorination of unsaturated per-and polyfluorinated carboxylic acids under anaerobic and aerobic conditions: a structure specificity study. Environmental science & technology, 56 (8), 4894-4904.
Zhang, G., Zhaoke, P., Yaomin, W., Ran, S., Xiaoyan, Z., & and Fan, Y. (2019). Distribution of Perfluorinated Compounds in Surface Water and Soil in Partial Areas of Shandong Province, China. Soil and Sediment Contamination: An International Journal, 28 (5), 502-512.
Zhang, L., Wang, Q., Chen, H., Yao, Y., & Sun, H. (2021). Uptake and translocation of perfluoroalkyl acids with different carbon chain lengths (C2–C8) in wheat (Triticum acstivnm L.) under the effect of copper exposure. Environmental Pollution, 274, 116550.
Zhang, W., Cao, H., Mahadevan Subramanya, S., Savage, P., & Liang, Y. (2020). Destruction of perfluoroalkyl acids accumulated in Typha latifolia through hydrothermal liquefaction. ACS Sustainable Chemistry & Engineering, 8 (25), 9257-9262.
Zhang, Q. Y., Xu, L. L., Zhong, M. T., Chen, Y. K., Lai, M. Q., Wang, Q., & Xie, X. L. (2024). Gestational GenX and PFOA exposures induce hepatotoxicity, metabolic pathway, and microbiome shifts in weanling mice. Sci Total Environ, 907, 168059.
Zhang, Y., Tan, D., Geng, Y., Wang, L., Peng, Y., He, Z., Xu, Y., & Liu, X. (2016). Perfluorinated Compounds in Greenhouse and Open Agricultural Producing Areas of Three Provinces of China: Levels, Sources and Risk Assessment. Int J Environ Res Public Health, 13 (12).
Zhou, L., Xia, M., Wang, L., & Mao, H. (2016). Toxic effect of perfluorooctanoic acid (PFOA) on germination and seedling growth of wheat (Triticum aestivum L.). Chemosphere, 159, 420-425.
Zhu, H., & Kannan, K. (2019). Distribution and partitioning of perfluoroalkyl carboxylic acids in surface soil, plants, and earthworms at a contaminated site. Science of the total environment, 647, 954-961.
Zodrow, J., Frenchmeyer, M., Dally, K., Osborn, E., Anderson, P. N., & Divine, C. (2020). Development of Per and Polyfluoroalkyl Substances Ecological Risk-Based Screening Levels. Environmental Toxicology and Chemistry, 40 (3), 921-936.
Zodrow, J. M., Frenchmeyer, M., Dally, K., Osborn, E., Anderson, P., & Divine, C. (2021). Development of per and polyfluoroalkyl substances ecological risk‐based screening levels. Environmental Toxicology and Chemistry, 40 (3), 921-936.