Abdelhamid, M. A., Meligy, A. M., Yeo, K. B., Lee, C. S., & Pack. S. P. (2020). Silaffin-3-derived pentalysine cluster as a new fusion tag for one-step immobilization and purification of recombinant Bacillus subtilis catalase on bare silica particles. International journal of biological macromolecules, 159, 1103-1112.
Bandyopadhyay S, & Kumar Maiti S. (2021). Different soil factors influencing dehydrogenase activity in mine degraded lands—state-of-art review. Water, Air, & Soil Pollution, 232(9), 1-10.
Burbank, M. B., Weaver, T. J., Green, T. L., Williams, B. C., & Crawford, R. L. (2011). Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiology Journal, 28(4), 301-312.
Burbank, M., Weaver, T., Lewis, R., Williams, T., Williams, B., & Crawford, R. (2013). Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria. Journal of Geotechnical and Geoenvironmental Engineering, 139(6), 928-936.
Çakmakçı, R., Haliloglu, K., Türkoğlu, A., Özkan, G., Kutlu, M., Varmazyari, A., Molnar, Z., Jamshidi, B., Pour-Aboughadareh, A. & Bocianowski, J. (2023). Effect of different Plant Growth-Promoting Rhizobacteria on biological soil properties, growth, yield and quality of oregano (Origanum onites L.). Agronomy, 13(10), 1-17.
Carter, M. S., Tuttle, M. J., Mancini, J. A., Martineau, R., Hung, C. S., & Gupta, M. K. (2023). Microbially induced calcium carbonate precipitation by Sporosarcina pasteurii: a case study in optimizing biological CaCO3 precipitation. Applied and Environmental Microbiology, 89(8), 1-17.
Chabot, M., Morales, E., Cummings, J., Rios, N., Giatpaiboon, S., & Mogul, R. (2020). Simple kinetics, assay, and trends for soil microbial catalases. Analytical Biochemistry, 610, 1-11.
De Muynck, W., De Belie, N., & Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: a review. Ecological engineering, 36(2), 118-136.
Ferreira, L. F. R., Torres, N. H., de Armas, R. D., Fernandes, C. D., da Silva Vilar, D., Aguiar, M. M., Pompeo, G. B., Monteiro, R. T. R., Iqbal, H. M. N., Bilal, M., Bharagava, R. N. (2020). Fungal lignin-modifying enzymes induced by vinasse mycodegradation and its relationship with oxidative stress. Biocatalysis and Agricultural Biotechnology, 27, 1-9.
Graddy, C. M., Gomez, M. G., DeJong, J. T., & Nelson, D. C. (2021). Native bacterial community convergence in augmented and stimulated ureolytic MICP biocementation. Environmental Science & Technology, 55(15), 10784-10793.
Gu, P., Ma, Q., Zhao, S., Li, Q., & Gao, J. (2023). Alanine dehydrogenases from four different microorganisms: Characterization and their application in L-alanine production. Biotechnology for Biofuels and Bioproducts, 16(1), 1-16.
Harkes, M. P., Van Paassen, L. A., Booster, J. L., Whiffin, V. S., & van Loosdrecht, M. C. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36(2), 112-117.
Imran, M. A., Kimura, S., Nakashima, K., Evelpidou, N., & Kawasaki, S. (2019). Feasibility study of native ureolytic bacteria for biocementation towards coastal erosion protection by MICP method. Applied Sciences, 9(20), 1-15.
Irfan, M. F., Hossain, S. M. Z., Khalid, H., Sadaf, F., Al-Thawadi, S., Alshater, A., Hossain. M. M. & Razzak, S. A. (2019). Optimization of bio-cement production from cement kiln dust using microalgae. Biotechnology Reports, 23, 1- 10.
Johnson J L, & Temple K L. (1964). Some variables affecting the measurement of “catalase activity” in soil. Soil Science Society of America Journal, 28(2), 207-209.
Kaczyńska, G., Borowik, A., & Wyszkowska, J. (2015). Soil dehydrogenases as an indicator of contamination of the environment with petroleum products. Water, Air, & Soil Pollution, 226, 1-11.
Kim, G., Kim, J., & Youn, H. (2018). Effect of temperature, pH, and reaction duration on microbially induced calcite precipitation. Applied Sciences, 8(8), 1-10.
Koçak, B. (2020). Importance of urease activity in soil. In Proceedings of the International Scientific and Vocational Studies Congress–Science and Health, 12, 51-60.
Konstantinou, C., Wang, Y., Biscontin, G., & Soga, K. (2021). The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of bio-treated coarse sand specimens. Scientific ReportsReports, 11(1), 1-17.
Kumari, J. A., Rao, P. C., Padmaja, G., & Madhavi, M. (2017). Effect of physico-chemical properties on soil enzyme urease activity in some soils of Ranga reddy district of Telangana State, India. International Journal of Current Microbiology and Applied, 6, 1708-1714.
Leeprasert, L., Chonudomkul, D., & Boonmak, C. (2022). Biocalcifying potential of ureolytic bacteria isolated from soil for biocementation and material crack repair. Microorganisms, 10(5), 1-15.
Li, Q., Liang, J. H., He, Y. Y., Hu, Q. J., & Yu, S. (2014). Effect of land use on soil enzyme activities at karst area in Nanchuan, Chongqing, southwest China. Plant, Soil and Environment, 60(1), 15-20.
Lin, H., Suleiman, M. T., Brown, D. G., & Kavazanjian Jr, E. (2016). Mechanical behavior of sands treated by microbially induced carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 1-13.
Liu, P., Zhang, Y., Tang, Q., & Shi, S. (2021). Bioremediation of metal-contaminated soils by microbially-induced carbonate precipitation and its effects on ecotoxicity and long-term stability. Biochemical Engineering Journal, 166, 1-8.
Lo, H. F., Su, J. Y., Chen, H. L., Chen, J. C., & Lin, L. L. (2011). Biophysical studies of an NAD (P)+-dependent aldehyde dehydrogenase from Bacillus licheniformis. European Biophysics Journal. 40, 1131-1142.
Mambu, S. M. (2014). Soil Dehydrogenase Activity: A Comparison Between the TTC and INT Method. A review. Jurnal Ilmiah Sains, 87-94.
Naeimi, M., Chu, J., Khosroshahi, M., & Zenouzi, L. K. (2023). Soil stabilization for dunes fixation using microbially induced calcium carbonate precipitation. Geoderma, 429, 1-12.
Navnage, N. P., Patle, P. N., & Ramteke, P. R. (2018). Dehydrogenase activity (DHA): Measure of total microbial activity and as indicator of soil quality. International Journal of Chemical Studies, 6(1), 456-458.
Nayanthara, P. G. N., Dassanayake, A. B. N., Nakashima, K., & Kawasaki, S. (2019). Microbial induced carbonate precipitation using a native inland bacterium for beach sand stabilization in nearshore areas. Applied Sciences, 9(15), 1-24.
Ni, J., Tokuyama, S., Sogabe, A., Kawamura, Y., & Tahara, Y. (2001). Cloning and high expression of catalase gene from Bacillus sp. TE124. Journal of Bioscience Bioscience and Bioengineering, 91(4), 422-424.
Nikseresht, F., Landi, A., Sayyad, G., Ghezelbash, G. R., & Schulin, R. (2020). Sugarecane molasse and vinasse added as microbial growth substrates increase calcium carbonate content, surface stability and resistance against wind erosion of desert soils. Journal of Environmental Environmental Management, 268, 1-8.
Oualha, M., Bibi, S., Sulaiman, M., & Zouari, N. (2020). Microbially induced calcite precipitation in calcareous soils by endogenous Bacillus cereus, at high pH and harsh weather. Journal of Environmental Management, 257, 1-10.
Paar, A., Costa, S., Tzanov, T., Gudelj, M., Robra, K. H., Cavaco-Paulo, A., & Gübitz, G. M. (2001). Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents. Journal of Biotechnology, 89(2-3), 147-153.
Pei, D., Liu, Z., Wu, W., & Hu, B. (2021). Transcriptome analyses reveal the utilization of nitrogen sources and related metabolic mechanisms of Sporosarcina pasteurii. PLoS One, 16(2), 1-22.
Pirhadi, N. (2024). Isolation of native bacteria and evaluation of their ability to produce Biocement for sand stabilization of southwestern of Iran (Doctoral dissertation). Supervised by Habiballah Nadian and Bijan Khalilimoghadam, Agricultural Sciences and Natural Resources University of Khuzestan, Faculty of Agriculture, Ahvaz. (In Persian).
Pirhadi, N., Nadian, H., Khalilimoghadam, B., & Motamedi, H. (2024). The effect of vinasse as a carbon source on the activity of urease-producing bacteria in the microbially induced calcite precipitation (MICP) approach. Desert, 29(1), 53-70.
Possignolo-Vitti, N. V., Bertoncini, E. I., & Vitti, A. C. (2017). Decomposition of the organic matter of natural and concentrated vinasse in sandy and clayey soils. Water Science and Technology. 76(3): 728-738.
Rajasekar, A., Zhao, C., Wu, S., Murava, R. T., & Wilkinson, S. (2024). Synergistic biocementation: harnessing Comamonas and Bacillus ureolytic bacteria for enhanced sand stabilization. World Journal of Microbiology and Biotechnology, 40(7), 1-15.
Schinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. eds. (2012). Methods in soil biology. New York: Springer Science & business media.
Sen, A., Ozkarsli, M., Dogan, N. M., Semiz, A., & Arslan, S. (2011). Cloning, expression, purification and characterization of Bacillus licheniformis catalase from Pamukkale Hot Springs. Current Opinion in Biotechnology, (22), 1-39.
Shaeer, A., Aslam, M., & Rashid, N. (2021). Structural and functional analyses of a novel manganese-catalase from Bacillus subtilis R5. International Journal of Biological Macromolecules, 180, 222-233.
Sheikhloo, F., & Rasouli Sadaghiani, M. (2016). Effects of different agronomic and forest land uses on soil enzyme activity. Iranian Journal of Soil and Water Research, 47(1), 205-216. (In Persian).
Sohail, M. G., Al Disi, Z., Zouari, N., Al Nuaimi, N., Kahraman, R., Gencturk, B., Rodrigues, D. F. & Yildirim, Y. (2022). Bio self-healing concrete using MICP by an indigenous Bacillus cereus strain isolated from Qatari soil. Construction and Building Materials, 328, 1-10.
Tang, C. S., Yin, L. Y., Jiang, N. J., Zhu, C., Zeng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79, 1-23.
Torres, M. A., Valdez, A. L., Angelicola, M. V., Raimondo, E. E., Pajot, H. F., & Nieto-Peñalver, C. G. (2023). Vinasse as a substrate for inoculant culture and soil fertigation: Advancing the circular and green economy. Science of The Total Environment, 887, 1-10.
Trasar-Cepeda, C., Camiña, F., Leirós, M. C., & Gil-Sotres, F. (1999). An improved method to measure catalase activity in soils. Soil Biology and Biochemistry, 31(3), 483-485.
Wang Y. D., YunChuan, M., WeiHao, W., YangRui, L. Y., & YanPing, Y. (2006). Effect of vinasse irrigation on the activity of three enzymes and agronomic characters at seedling stage of sugarcane. Journal Sugar Tech, 8, 264–267.
Wang, X., Zhu, J., Wei, H., Ding, Z., Li, X., Liu, Z., Wang, H. & Wang, Y. (2023). Biological control efficacy of Bacillus licheniformis HG03 against soft rot disease of postharvest peach. Food Control, 145, 1-27.
Whiffin, V. S., Van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417-423.
Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q., & Cai, Y. (2019). The roles of environmental factors in regulation of oxidative stress in plant. BioMed Research International, 1-11.
Yuan, F., Yin, S., Xu, Y., Xiang, L., Wang, H., Li, Z., Fan, K., & Pan, G. (2021). The richness and diversity of catalases in bacteria. Frontiers in Microbiology, 12, 1-11.
Zhang, T., Wan, S., Kang, Y., & Feng, H. (2014). Urease activity and its relationships to soil physiochemical properties in a highly saline-sodic soil. Journal of Soil Science and Plant Nutrition, 14(2), 304-315.