Allen, R.G., Clemmens, A.J., Burt, C.M., Solomon, K., & O'Halloran, T. (2005). Prediction accuracy for projectwide evapotranspiration using crop coefficients and reference evapotranspiration.
Journal of irrigation and drainage engineering. 131 (1):24.
https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(24).
Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome, Italy.
Allen, R.G., Wright, J.L., Pruitt, W.O., Pereira, L.S., & Jensen, M.E. (2007). Water requirements. In G.J. Hoffman, R.G.Evans, M.E. Jensen, D.L. Martin, R.L. Elliot (Eds.), Design and Operation of Farm Irrigation Systems. (pp. 208–288). St Joseph, MI: ASABE.
Anonymous. (2004). Rehabilitation Studies of the Sefidroud irrigation and drainage network, Gilan. Gilan Regional Water Authority, Pandam Consulting Engineers, Volume 10. (In Persian)
Asaadi Mehrabani, A., Banihabib, M.E., & Roozbahany, A. (2018). Fuzzy Linear Programming Model for the Optimization of Cropping Pattern in Zarrinehroud Basin. Iran-Water Resources Research, 14(1), 13-24. (In Persian).
Arizpe, N., Giampietro, M., Ramos-Martin, J. (2011). Food security and fossil energy dependence: An international comparison of the use of fossil energy in agriculture (1991–2003). Critical Reviews in Plant Sciences, 30, 45–63. https://doi.org/10.1080/07352689.2011.554352.
Asaadi Mehrabani, M., Banihabib, M.E., & Roozbahany, A. (2018). Fuzzy Linear Programming Model for the Optimization of Cropping Pattern in Zarrinehroud Basin. Iran-Water Resources Research, 14(1), 13-24.
Bhattarai, N., Pollack, A., Lobell, D.B., Fishman, R., Singh, B., Dar, A., & Jain, M. (2021). The impact of groundwater depletion on agricultural production in India.
Environmental Research Letters, 16 (8), 085003
https://doi.org/10.1088/1748-9326/ac10de.
Buko, J., Duda, J., & Makowski, A. (2021). Food Production Security in Times of a Long-Term Energy Shortage Crisis: The Example of Poland.
Energies, 14, 4725.
https://doi.org/10.3390/en14164725.
D’Odorico, P., Davis, K.F., Rosa, L., Carr, J.A., Chiarelli, D., Dell’Angelo, J., Gephart, J., MacDonald, G.K., Seekell, D.A., Suweis, S., & Rulli, M.C. (2018). The global food-energywater nexus.
Reviews of Geophysics, 56, 456–531.
https://doi.org/10.1029/2017RG000591.
Pirmoradian, N., & Davatgar, N. (2019). Simulating the effects of climatic fluctuations on rice irrigation water requirement using AquaCrop. Agricultural water management 213, 97-106.
https://doi.org/10.1016/j.agwat.2018.10.003.
Pirmoradian, N. (2018). Designing and creating the native system of water requirement of agricultural and garden plants in different climates of Iran. Soil and Water Research Institute, Agricultural Research and Training Organization, Ministry of Agriculture. (In Persian)
Daher, B., Lee, S.H., Kaushik, V., Blake, J., Askariyeh, M.H., Shafiezadeh, H., Zamaripa, S., & Mohtar, R.H. (2019). Towards bridging the water gap in Texas: a waterenergy-food nexus approach. Science of The Total Environment, 647, 449–463. https://doi.org/10.1016/j.scitotenv.2018.07.398.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6, 182-197. https://doi.org/10.1109/4235.996017.
Fernandez, ´J.E., Alcon, F., Diaz-Espejo, A., Hernandez-Santana, V., & Cuevas, M.V. (2020). Water use indicators and economic analysis for on-farm irrigation decision: a case study of a super high density olive tree orchard.
Agricultural Water Management, 237, 106074.
https://doi.org/10.1016/j.agwat.2020.106074.
Fiedler, M., Nedoma, J., Ramík, J., & Rohn, J. (2006). Linear Optimization Problems with Inexact Data.
Springer US. https://doi.org/
10.1007/0-387-32698-7
Food and Agriculture Organization of the United Nations (FAO). (2017). Water for Sustainable Food and Agriculture: A report produced for the G20 Presidency of Germany. https://www.fao.org/3/i7959e/i7959e.pdf.
Georgiou, S., Acha, S., Shah, N., & Markides, C.N. (2018). A generic tool for quantifying the energy requirements of glasshouse food production.
Journal of Cleaner Production, 191, 384–399.
https://doi.org/10.1016/j.jclepro.2018.03.278.
Ghisellini, P., Setti, M., & Ulgiati, S. (2016). Energy and land use in worldwide agriculture: An application of life cycle energy and cluster analysis. Environment, Development and Sustainability, 18, 799–837. https://doi.org/10.1007/s10668-015-9678-2.
Gholizadeh, H., Fazlollahtabar, H., & Khalilzadeh, M. (2020). A robust fuzzy stochastic programming for sustainable procurement and logistics under hybrid uncertainty using big data.
Journal of Cleaner Production, 258, 120640
https://doi.org/10.1016/j. jclepro.2020.120640.
Guan, X., Mascaro, G., Sampson, D., & Maciejewski, R. (2020). A metropolitan scale water management analysis of the food-energy-water nexus.
Science of The Total Environment, 701, 134478
https://doi.org/10.1016/j.scitotenv.2019.134478.
IEA. (2016). World Energy Outlook. International Energy Agency., Paris, France.
Ji, L., Zhang, B., Huang, G., & Lu, Y. (2020). Multi-stage stochastic fuzzy random programming for food-water-energy nexus management under uncertainties. Resources, Conservation and Recycling, 155, 104665 https://doi.org/10.1016/j. resconrec.2019.104665.
Ji, L., Zhang, B., Huang, G., & Lu, Y. (2020). Multi-stage stochastic fuzzy random programming for food-water-energy nexus management under uncertainties. Resources, Conservation and Recycling, 155, 104665. https://doi.org/10.1016/j.resconrec.2019.104665.
Jin, S.W., Li, Y.P., & Huang, G.H. (2017). An interactive optimization model for energy systems planning associated with clean-energy development under uncertainty. International Journal of Energy Research, 41, 482–501. https://doi.org/10.1002/er.3628.
Li, M., Fu, Q., Singh, V.P., Ji, Y., Liu, D., Zhang, C.L., & Li, T.X. (2019). An optimal modelling approach for managing agricultural water-energy-food nexus under uncertainty. Science of The Total Environment, 651, 1416–1434. https://doi.org/10.1016/j.scitotenv.2018.09.291.
Li, Y.P., & Huang, G.H. (2011). Planning Agricultural Water Resources System Associated With Fuzzy and Random Features.
Journal of the American Water Resources Association (JAWRA), 47(4), 841-860.
https://doi.org/10.1111/j.1752-1688.2011.00558.x.
Liu, D.D., Guo, S.L., Liu, P., Xiong, L.H., Zou, H., Tian, J., Zeng, Y.J., Shen, Y.J., & Zhang, J. Y. (2019). Optimisation of water-energy nexus based on its diagram in cascade reservoir system.
Journal of Hydrology, 569, 347–358.
https://doi.org/10.1016/j.jhydrol.2018.12.010.
Liu, J., Li, Y., Huang, G., Suo, C., & Yin, S. (2017). An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems. Energies, 10, 1914. doi:10.3390/en10111914.
Liu, J., Mooney, H., Hull, V., Davis, S.J., Gaskell, J., Hertel, T., Lubchenco, J., Seto, K.C., Gleick, P., Kremen, C., & Li, S.X. (2015). Systems integration for global sustainability. Science, 347 (6225), 1258832. DOI: 10.1126/science.1258832.
Lv, J., Li, Y.P., Shan, B.G., Jin, S.W., & Suo, C. (2018). Planning energy-water nexus system under multiple uncertainties–A case study of Hebei province. Applied Energy, 229, 389–403. https://doi.org/10.1016/j.apenergy.2018.08.010.
Namany, S., Al-Ansari, T., & Govindan, R. (2019). Optimisation of the energy, water, and food nexus for food security scenarios. Computers & Chemical Engineering, 129, 106513. https://doi.org/10.1016/j.compchemeng.2019.106513.
Opejin, A.K., Aggarwal, R.M., White, D.D., Jones, J.L., Maciejewski, R., Mascaro, G., & Sarjoughian, H.S. (2020). A bibliometric analysis of food-energy-water nexus literature.
Sustainability, 12 (3), 1112.
https://doi.org/10.3390/su12031112.
Perrone, D., Murphy, J., & Hornberger, G.M. (2011). Gaining perspective on the water-energy nexus at the community scale. Environmental Science & Technology, 45 (10), 4228–4234. https://doi.org/10.1021/es103230n.
Pyrce, R. (2004). Hydrological low flow indices and their uses.
Raes, D. (1982). A summary simulation model of the water budget of a cropped soil (budget). Dissertationes de Agricultura (Belgium) no 122.
Ren, C., Guo, P., Tan, Q., & Zhang, L. (2017). A multi-objective fuzzy programming model for optimal use of irrigation water and land resources under uncertainty in Gansu Province, China.
Journal of Cleaner Production, 164, 85-94.
http://dx.doi.org/10.1016/j.jclepro.2017.06.185.
Ren, C., Li, Z., & Zhang, H. (2019). Integrated multi-objective stochastic fuzzy programming and AHP method for agricultural water and land optimization allocation under multiple uncertainties. Journal of Cleaner Production, 210, 12-24. https://doi.org/10.1016/j.jclepro.2018.10.348.
Sanchis, R., Díaz-Madroñero, M., López-Jiménez, P.A., & Pérez-Sánchez, M. (2019). Solution approaches for the management of the water resources in irrigation water systems with fuzzy costs. Water, 11 (12), 2432. https://doi.org/10.3390/w11122432.
Sargazi, A.R. (2017). Planning and optimal allocation of water resources in the agricultural sector using fuzzy programming approach (Case study of Someh Sara city). Iran-Water Resources Research, 13(2), 74-81.
Sun, J., Li, Y.P., Suo, C., & Liu, J. (2020). Development of an uncertain water-food-energy nexus model for pursuing sustainable agricultural and electric productions.
Agricultural Water Management, 241, 106384.
https://doi.org/10.1016/j.agwat.2020.106384.
Xie, Y.L., Xia, D.X., Jib, L., & Huang, G.H. (2018). An inexact stochastic-fuzzy optimization model for agricultural water allocation and land resources utilization management under considering effective rainfall.
Ecological Indicators, 92, 301-311.
https://doi.org/10.1016/j.ecolind.2017.09.026.
Xu, Y., Tan, J., Wang, X., Li, W., He, X., Hu, X., & Fa, Y. (2022). Synergetic management of water-energy-food nexus system and GHG emissions under multiple uncertainties: An inexact fractional fuzzy chance constraint programming method. Agricultural Water Management, 262, 107323.
Yu, L., Li, Q.W., Jin, S.W., Chen, C., Li, Y.P., Fan, Y.R., & Zuo, Q.T. (2020). Coupling the two-level programming and copula for optimizing energy-water nexus system management – A case study of Henan Province. Journal of Hydrology, 586, 124832. https://doi. org/10.1016/j.jhydrol.2020.124832.
Yu, L., Li, Y.P., & Huang, G.H. (2019). Planning municipal-scale mixed energy system for stimulating renewable energy under multiple uncertainties-the city of Qingdao in Shandong Province, China. Energy, 166, 1120–1133. https://doi.org/10.1016/j.energy.2018.10.157.
Yu, L., Li, Y.P., & Huang, G.H. (2019). Planning municipal-scale mixed energy system for stimulating renewable energy under multiple uncertainties-the city of Qingdao in Shandong Province, China
. Energy, 166, 1120–1133.
https://doi.org/10.1016/j.energy.2018.10.157.
Yu, G., Song, X., Wang, Q., Liu, Y., Guan, D., Yan, J., Sun, X., Zhang, L., & Wen, X. (2008). Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables.
New Phytologist, 177 (4). https://doi.org/
10.1111/j.1469-8137.2007.02316.x.
Zhang, C., Engel, B.A., & Guo, P. (2018). An Interval-based Fuzzy Chance-constrained Irrigation Water Allocation model with double-sided fuzziness.
Agricultural Water Management, 210(30), 22-31.
https://doi.org/10.1016/j.agwat.2018.07.045
Zhang, C.L., Guo, S.S., Zhang, F., Engel, B.A., & Guo, P. (2019). Towards sustainable water resources planning and pollution control: Inexact joint-probabilistic double-sided stochastic chance-constrained programming model.
Science of The Total Environment, 657, 73–86.
https://doi.org/10.1016/j.scitotenv.2018.11.463.
Zhang, F., Zhang, C.L., Yan, Z.H., Guo, S.S., Wang, Y.Z., & Guo, P. (2018). An interval nonlinear multiobjective programming model with fuzzy interval credibility constraint for crop monthly water allocation.
Agricultural Water Management, 209, 123–133.
https://doi.org/10.1016/j.agwat.2018.07.026.
Zhang, H., Guo, S., Ren, C., & Guo, P. (2018). Integrated IMO-TSP and AHP Method for Regional Water Allocation under Uncertainty. Journal of Water Resources Planning and Management, 144(6). DOI:10.1061/(ASCE)WR.1943-5452.0000933.
Zuo, Q., Wu, Q., Yu, L., Li, Y., & Fan, Y. (2021). Optimization of uncertain agricultural management considering the framework of water, energy and food.
Agricultural Water Management, 253, 106907
https://doi.org/10.1016/j.agwat.2021.106907.