مدلسازی هدررفت خاک ناشی از فرسایش خندقی در مناطق فاقد آمار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع ‌طبیعی اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی،

2 بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع ‌طبیعی کردستان، سازمان تحقیقات، آموزش و ترویج کشاورزی،

3 بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع ‌طبیعی فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز،

4 پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

5 بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع ‌طبیعی آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی،

چکیده

فرسایش خندقی به‌عنوان یکی از مخرب‌ترین شکل تخریب زمین و هدررفت خاک در سطح جهانی مطرح می‌باشد. باتوجه به زمان‌بر و هزینه‌بر بودن پایش میدانی، این پژوهش به دنبال مدلسازی و برآورد حجم خاک از دست رفته به‌وسیله آن در حوزه آبخیز چوپانلو در استان آذربایجان غربی بود. به این منظور، ابتدا پایش میدانی جهت شناسایی خندق‌ها انجام شد و سپس به منظور خوشه‌بندی خندق‌ها و تعیین خندق‌های منتخب، لایه‌های رقومی عوامل تأثیرگذار بر گسترش خندق‌ها از جمله عوامل توپوگرافی (ارتفاع، شیب، جهت، انحنای سطح و شاخص موقعیت شیب نسبی)، پوشش گیاهی، کاربری اراضی، سنگ‌شناسی و هیدرواقلیم (فاصله از جریان، تراکم زهکشی، شاخص رطوبت توپوگرافی، بارش سالیانه و فراوانی بارش‌‌های سنگین) تهیه شدند. سپس حجم خاک از دست رفته ناشی از فرسایش خندقی در طی سه سال 1400-1402 برای خندق‌های منتخب به عنوان متغیر وابسته در عرصه اندازه‌گیری شد. مدلسازی در این پژوهش با استفاده از سه مدل جنگل تصادفی، ماشین بردار پشتیبان و شبکه عصبی مصنوعی و با رویکرد اعتبارسنجی متقاطع صورت پذیرفت. نتایج فرمول کوکران نشان داد که از بین 67 مورد خندق شناسایی شده در عرصه تعداد 58 مورد حداقل نمونه لازم می‌باشند که این تعداد خندق منتخب پس از خوشه‌بندی از بین سه خوشه شناسایی شده انتخاب شدند. مقدار فرسایش خالص سالانه خاک ناشی از خندق‌های منتخب (58 مورد) به‌ترتیب برابر با 172، 196 و 208 تن در طی سال‌های 1400، 1401 و 1402 می‌باشد. نتایج نشان داد که مدل جنگل تصادفی عملکرد خوب، مدل ماشین بردار پشتیبان عملکرد متوسط و مدل شبکه عصبی عملکرد ضعیفی در مدلسازی داشتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling soil loss due to gully erosion in the data-scarce regions

نویسندگان [English]

  • Bahram Choubin 1
  • Omid Rahmati 2
  • Seyed Masoud Soleimanpour 3
  • Samad Shadfar 4
  • Ahmad Najafi Eigdir 5
1 Department of Soil Conservation and Watershed Management Research, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran
2 Department of Soil Conservation and Watershed Management Research, Kurdistan Agricultural and Natural Resources Research and Education Center, AREEO, Sanandaj, Iran
3 Department of Soil Conservation and Watershed Management Research, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
4 Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
5 Department of Soil Conservation and Watershed Management Research, West Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Urmia, Iran
چکیده [English]

Gully erosion is recognized as a detrimental form of land degradation and soil loss worldwide. Considering the time-consuming and costly nature of field monitoring, this research aimed to develop models for estimating the volume of soil lost due to gully erosion in the Choopanlu watershed, located in West Azerbaijan province, Iran. The study commenced with field monitoring to identify gullies in the area. Following this, digital layers of factors influencing gully erosion were prepared to facilitate gully clustering and selection. These factors included topographical characteristics (elevation, slope, aspect, surface curvature, and relative slope position index), vegetation, land use, soil, lithology, and hydroclimate indicators (distance from stream, drainage density, topographic wetness index, annual precipitation, and frequency of heavy rainfall events). Subsequently, the volume of soil lost due to gully erosion during the three-year period (2021-2023) was measured as the dependent variable for the selected gullies through field observations. In this study, three machine learning models including random forest (RF), support vector machine (SVM), and artificial neural network (ANN) were employed using a cross-validation approach. Cochran's formula results indicated that among the 67 identified gullies in the field, a minimum sample size of 58 gullies was required. Following clustering, this number of selected gullies was chosen from the three identified clusters. The annual soil erosion caused by the selected gullies (i.e., 58 gullies) was estimated to be 172 tons in 2021, 196 tons in 2022, and 208 tons in 2023. According to the modeling results, it can be inferred that the RF model demonstrated the best performance, followed by the SVM model with moderate performance, and the ANN model exhibiting the poorest performance in modeling soil loss due to gully erosion. 

کلیدواژه‌ها [English]

  • Choopanlu watershed
  • Gully erosion
  • Machine learning
  • Modeling
  • Soil loss

EXTENDED ABSTRACT

Introduction

Gully erosion is a critical and detrimental form of land degradation and soil loss affecting various regions worldwide. Its significant impact necessitates comprehensive assessments and monitoring efforts to mitigate its effects. However, traditional field measurement techniques for gully erosion can be time-consuming and costly, posing challenges in accurately quantifying soil loss from this process. To overcome these limitations, this study aimed to estimate soil loss resulting from gully erosion through the application of machine learning models. The research was conducted in the Choopanlu watershed, situated in West Azarbaijan province, Iran. By leveraging the capabilities of machine learning, the study sought to establish a more efficient and reliable method for assessing soil loss caused by gully erosion. This, in turn, would aid in formulating effective strategies to manage and control land degradation in the region.

Material and methods

The study commenced with field monitoring to identify gullies in the area to achieve this objective. Following this, digital layers of factors influencing gully expansion were prepared to facilitate gully clustering and selection. These factors included topographical characteristics (elevation, slope, aspect, surface curvature, and relative slope position index), vegetation, land use, soil, lithology, and hydroclimate indicators (distance from stream, drainage density, topographic wetness index, annual precipitation, and frequency of heavy rainfall events). Subsequently, the volume of soil lost due to gully erosion during the three-year period (2021-2023) was measured as the dependent variable for the selected gullies through field observations. In this study, three machine learning models were employed for modeling: Random Forest (RF), Support Vector Machine SVM), and Artificial Neural Network (ANN). The cross-validation approach was utilized for modeling process.

Results and discussion

Cochran's formula results indicated that among the 67 identified gullies in the field, a minimum sample size of 58 gullies was required. Following clustering, this number of selected gullies was chosen from the three identified clusters. The annual soil erosion caused by the selected gullies was estimated to be 172 tons in 2021, 196 tons in 2022, and 208 tons in 2023. The results of the multicollinearity analysis indicated that the elevation exhibited collinearity and thus was excluded from the modeling process. Based on the RMSE values and the coefficient of determination, it can be inferred that the RF model demonstrated the best performance, followed by the SVM model with moderate performance, and the ANN model exhibiting the poorest performance in modeling soil loss due to gully erosion. Consequently, the Random Forest model emerged as the most suitable model among the tested methods.

Conclusion

In conclusion, this study successfully applied machine learning models to estimate soil loss from gully erosion in the Choopanlu watershed. The analysis of 67 identified gullies, with a minimum sample size of 58, revealed an increasing trend in annual soil erosion over the three-year period. Multicollinearity analysis led to the exclusion of elevation, and subsequent model comparison indicated that the RF model outperformed the SVN and ANN models in predicting soil loss due to gully erosion. These findings demonstrate the potential of utilizing machine learning, particularly the RF model, for efficient and accurate assessment of soil loss from gully erosion in similar contexts. Further research could explore the application of these models in other regions and investigate additional factors influencing gully erosion processes.

Authors’ contribution:

Choubin B: Conceptualization, data curation, methodology, software, writing - original draft preparation.

Rahmati O: Conceptualization, methodology, writing—review and editing.

Soleimanpour SM: Conceptualization, supervision, validation.

Shadfar S: Conceptualization, project administration.

Najafi Eigdir A: Data curation, writing - original draft preparation.

Data Availability Statement:

The datasets are available upon a reasonable request to the corresponding author.

Ethical considerations:

The study was approved by the Ethics Committee of the Agricultural Research, Education and Extension Organization (AREEO). The authors avoided from data fabrication and falsification.

Funding:

The study was funded by the Agricultural Research, Education and Extension Organization (AREEO), Iran, and Grant No. 0-50-29-024-990514.

Conflict of interest:

The authors declare no conflict of interest. 

Ait Naceur, H., Abdo, H. G., Igmoullan, B., Namous, M., Alshehri, F., & A Albanai, J. (2024). Implementation of random forest, adaptive boosting, and gradient boosting decision trees algorithms for gully erosion susceptibility mapping using remote sensing and GIS. Environmental Earth Sciences83(3), 121. https://doi.org/10.1007/s12665-024-11424-5.
Avand, M., Janizadeh, S., Naghibi, S. A., Pourghasemi, H. R., Khosrobeigi Bozchaloei, S., & Blaschke, T. (2019). A comparative assessment of random forest and k-nearest neighbor classifiers for gully erosion susceptibility mapping. Water11(10), 2076. https://doi.org/10.3390/w11102076.
Casalí, J., Loizu, J., Campo, M. A., De Santisteban, L. M., & Álvarez-Mozos, J. (2006). Accuracy of methods for field assessment of rill and ephemeral gully erosion. Catena67(2), 128-138. https://doi.org/10.1016/j.catena.2006.03.005.
Chuma, G. B., Mugumaarhahama, Y., Mond, J. M., Bagula, E. M., Ndeko, A. B., Lucungu, P. B., ... & Schmitz, S. (2023). Gully erosion susceptibility mapping using four machine learning methods in Luzinzi watershed, eastern Democratic Republic of Congo. Physics and Chemistry of the Earth, Parts A/B/C129, 103295. https://doi.org/10.1016/j.pce.2022.103295.
Cochran, W.G., 1977. Sampling techniques. 3rd edn. (New York: John Wiley & Sons).
Dong, Y., Wu, Y., Qin, W., Guo, Q., Yin, Z., & Duan, X. (2019). The gully erosion rates in the black soil region of northeastern China: Induced by different processes and indicated by different indexes. Catena182, 104146. https://doi.org/10.1016/j.catena.2019.104146.
Dube, F., Nhapi, I., Murwira, A., Gumindoga, W., Goldin, J., & Mashauri, D. A. (2014). Potential of weight of evidence modelling for gully erosion hazard assessment in Mbire District–Zimbabwe. Physics and chemistry of the Earth, Parts A/B/C67, 145-152. https://doi.org/10.1016/j.pce.2014.02.002.
Garosi, Y., Sheklabadi, M., Pourghasemi, H. R., Besalatpour, A. A., Conoscenti, C., & Van Oost, K. (2018). Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma330, 65-78. https://doi.org/10.1016/j.geoderma.2018.05.027.
Gayen, A., Pourghasemi, H. R., Saha, S., Keesstra, S., & Bai, S. (2019). Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Science of the total environment668, 124-138. https://doi.org/10.1016/j.scitotenv.2019.02.436.
Genuer, R., Poggi, J. M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern recognition letters31(14), 2225-2236. https://doi.org/10.1016/j.patrec.2010.03.014.
Gornami, R., & Shadfar, S. (2018). Application of the GIS in the Determination of Susceptible Areas to Gully Erosion Using the Analytic Network Process (ANP). Watershed Management Research Journal31(4), 58-68. https://doi.org/10.22092/wmej.2018.121633.1112. (inPersian)
Hasanuzzaman, M., Adhikary, P. P., & Shit, P. K. (2024). Gully erosion susceptibility mapping and prioritization of gully-dominant sub-watersheds using machine learning algorithms: Evidence from the Silabati River (tropical river, India). Advances in Space Research73(3), 1653-1666. https://doi.org/10.1016/j.asr.2023.10.051.
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8.
Jie, C., Jing-Zhang, C., Man-Zhi, T., & Zi-tong, G. (2002). Soil degradation: a global problem endangering sustainable development. Journal of Geographical Sciences12, 243-252. https://doi.org/10.1007/BF02837480.
Kheradmand, H. R., & Soleimanpour, S. M. (2016). Longitudinal progress prediction of gully erosion with FAO model (Case study: a part of Abdan watershed, Bushehr province, South of Iran). International Journal of Biology Pharmacy and Allied Sciences, 5(2), 151-155.
Kuhn, M. (2015). Caret: classification and regression training. Astrophysics Source Code Library, ascl-1505.
Martins, B., Pinheiro, C., Nunes, A., Bento-Gonçalves, A., & Hermenegildo, C. (2024). Geo-environmental factors controlling gully distribution at the local scale in a Mediterranean environment. Catena236, 107712. https://doi.org/10.1016/j.catena.2023.107712.
Mfondoum, A. H. N., Nguet, P. W., Seuwui, D. T., Mfondoum, J. V. M., Ngenyam, H. B., Diba, I., ... & Beni, L. M. (2023). Stepwise integration of analytical hierarchy process with machine learning algorithms for landslide, gully erosion and flash flood susceptibility mapping over the North-Moungo perimeter, Cameroon. Geoenvironmental Disasters10(1), 22. https://doi.org/10.1186/s40677-023-00254-5.
Mohammadi, S., Balouei, F., Haji, K., Khaledi Darvishan, A., & Karydas, C. G. (2021). Country-scale spatio-temporal monitoring of soil erosion in Iran using the G2 model. International Journal of Digital Earth14(8), 1019-1039. https://doi.org/10.1080/17538947.2021.1919230.
Mohebzadeh, H., Biswas, A., Rudra, R., & Daggupati, P. (2022). Machine learning techniques for gully erosion susceptibility mapping: a review. Geosciences12(12), 429. https://doi.org/10.3390/geosciences12120429.
Mukai, S. (2017). Gully erosion rates and analysis of determining factors: a case study from the semi‐arid main ethiopian rift valley. Land degradation & development28(2), 602-615. https://doi.org/10.1002/ldr.2532.
Nyssen, J., Poesen, J., Moeyersons, J., Haile, M., & Deckers, J. (2008). Dynamics of soil erosion rates and controlling factors in the Northern Ethiopian Highlands–towards a sediment budget. Earth surface processes and landforms33(5), 695-711. https://doi.org/10.1002/esp.1569.
Pereira, P., Bogunovic, I., Muñoz-Rojas, M., & Brevik, E. C. (2018). Soil ecosystem services, sustainability, valuation and management. Current Opinion in Environmental Science & Health5, 7-13. https://doi.org/10.1016/j.coesh.2017.12.003.
Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentin, C. (2003). Gully erosion and environmental change: importance and research needs. Catena50(2-4), 91-133. https://doi.org/10.1016/S0341-8162(02)00143-1.
Rouhani, H., Fathabadi, A., & Baartman, J. (2021). A wrapper feature selection approach for efficient modelling of gully erosion susceptibility mapping. Progress in Physical Geography: Earth and Environment45(4), 580-599. https://doi.org/10.1177/0309133320979897.
Shrestha, N. (2020). Detecting multicollinearity in regression analysis. American Journal of Applied Mathematics and Statistics8(2), 39-42. doi: 10.12691/ajams-8-2-1.
Tebebu, T. Y., Abiy, A. Z., Zegeye, A. D., Dahlke, H. E., Easton, Z. M., Tilahun, S. A., ... & Steenhuis, T. S. (2010). Surface and subsurface flow effect on permanent gully formation and upland erosion near Lake Tana in the northern highlands of Ethiopia. Hydrology and Earth System Sciences14(11), 2207-2217.
Wang, J., Zhang, Y., Deng, J., Yu, S., & Zhao, Y. (2021). Long-term gully erosion and its response to human intervention in the tableland region of the chinese loess plateau. Remote Sensing13(24), 5053. https://doi.org/10.3390/rs13245053.
Willmott, C. J. (1981). On the validation of models. Physical geography2(2), 184-194. https://doi.org/10.1080/02723646.1981.10642213.
Yermolaev, O., Medvedeva, R., & Poesen, J. (2022). Spatial and temporal dynamics of gully erosion in anthropogenically modified forest and forest‐steppe landscapes of the European part of Russia. Earth Surface Processes and Landforms, 47(12), 2926-2940. https://doi.org/10.1002/esp.5433.
Zhang, X., Fan, J., Liu, Q., & Xiong, D. (2018). The contribution of gully erosion to total sediment production in a small watershed in Southwest China. Physical Geography39(3), 246-263.  https://doi.org/10.1080/02723646.2017.1356114.