مدل‌سازی افرازی سطوح فرسایش و رسوب بر مبنای خصوصیات خاک سطحی با استفاده از داده‌های سنجش از دور (RS)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه خاکشناسی دانشکده کشاورزی دانشگاه شهید چمران اهواز

2 دانشیار گروه خاکشناسی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، ایران

3 مربی گروه خاکشناسی دانشکده کشاورزی دانشگاه شهید چمران اهواز

چکیده

استفاده از مدل‌های افرازسازی و طبقه‌بندی مبتنی بر سنجش از دور به شکل گسترده‌ای  به منظور طبقه‌بندی و بررسی تغییرات وضعیت اراضی در حال افزایش است. در این پژوهش کارایی کاربرد و  ایجاد مدل‌های افرازی و طبقه‌بندی اراضی در معرض فرسایش و رسوب مورد بررسی قرار گرفته است. در پژوهش حاضر منطقه‌ی مطالعاتی ظهیریه در استان خوزستان با وسعت تقریبی 7100 هکتار با بهره‌گیری از تصاویر ماهواره‌ای و بررسی‌های میدانی به عرصه‌های فرسایشی، رسوبی و پایدار تقسیم شد و نمونه‌برداری خاک از سطوح فرسایشی و رسوبی صورت پذیرفت. پارامترهای فیزیکوشیمیایی خاک شامل اجزاء متشکله بافت خاک، جرم مخصوص ظاهری، ماده آلی، فسفر، آهک، هدایت الکتریکی، pH و مقدار گچ خاک اندازه‌گیری شد. برای ارزیابی ویژگی‌های بازتابی سطوح فرسایش یافته و رسوبی در منطقه‌ی مطالعاتی از باندها و شاخص‌های مستخرج از تصاویر لندست 8 سال 2022 استفاده شد. امکان تفکیک سطوح فرسایشی و رسوبی با بهره‌گیری از الگوریتم‌های طبقه‌بندی نظارت شده و ارزیابی کارایی آن‌ها توسط ضریب کاپا و صحت کلی انجام شد. نتایج آزمون مقایسه‌ی میانگین بر روی خصوصیات فیزیکیوشیمیایی خاک در سطوح فرسایشی و رسوبی در بخش سطحی خاک (20-0 سانتی‌متر) نشان داد که درصد رس با میانگین 37/9 برای سطوح فرسایشی و 74/14 برای رسوبی و گچ با میانگین 68/14 برای سطوح فرسایشی و 2/6 برای رسوبی بین سطوح فرسایشی و رسوبی دارای اختلاف معنی‌دار (5 درصد) هستند و می‌توانند به عنوان پارامترهایی برای تفکیک سطوح استفاده شوند ولیکن برای سایر پارامترها اختلاف معنی‌داری بین سطوح فرسایش یافته و رسوبی مشاهده نشد. نتایج بررسی‌ها نشان داد شاخص‌های BI، SI و NDSI  به طور موثری می‌توانند برای تفکیک سطوح فرسایش یافته از سطوح رسوبی بکار گرفته شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Demarcation modeling of erosional and depositional surfaces with soil characteristics and remote sensing (RS)

نویسندگان [English]

  • Mitra Yarahmadi 1
  • Ataallah Khademalrasoul 2
  • Hadi Amerikhah 3
1 Soil Science Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz
2 Associate Professor of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz. Ahvaz. Iran
3 Soil Science Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz
چکیده [English]

 
Nowadays demarcation and classification models based on remote sensing are widely used for classification processes and land changes. In this research, the efficiency of demarcation models to evaluate erosional and depositional regions investigated. The study area of Zahirieh in Khuzestan province, with an approximate area of 7100 hectares, was divided into erosional, depositional, and stable areas based on satellite images and field surveys. Then soil sampling was done from erosional and depositional surfaces. The physical and chemical parameters of the soil including soil texture components, bulk density, organic matter, phosphorus, lime, electrical conductivity, pH and soil gypsum were measured. In order to evaluate the reflective characteristics of erosional and depositional surfaces, bands and indices extracted from Landsat 8 images of 2022. Moreover, the efficiency of supervised algorithms was performed using Kappa coefficient and overall accuracy. The results of the average comparison test depicted that the percentage of soil clay with 9.37 for erosional surfaces and 14.74 for depositional surfaces and gypsum with mean of 14.68 for erosional and 6.2 for depositional surfaces has a significant difference (5%) between erosional and depositional surfaces therefore, they can be used as parameters to separate surfaces, but for other parameters, no significant difference was observed. The results showed that BI, SI and NDSI indices can be effectively used to distinguish eroded surfaces from depositional surfaces.

کلیدواژه‌ها [English]

  • Demarcation modeling
  • erosional and depositional surfaces
  • remote sensing indicators
  • spectrometry
  • supervised algorithms

EXTENDED ABSTRACT

 

Introduction:

Soil erosion is the most common form of soil degradation all over the world. Soil erosion including on-site and off-site effects; the off-site effect of soil erosion is soil deposition. In order to assess the effects of soil erosion it is necessary to apply different methods and techniques. In this regard demarcation modeling based on remote sensing is the applicable technique which is usable for soil classification, ultimately precise soil erosion control at different scales. Therefore this study was conducted to evaluate the applicability of demarcation modeling to diagnostic soil erosional and depositional surfaces using remote sensing indices. 

Material and methods:

Regarding the importance of selection and implementation of conservational scenarios to manage the costs; necessarily has to concern on highlighting the erosional and depositional surfaces in the watersheds. Zahirieh area in Khuzestan Province with approximately 7100 ha and water erosion risks mainly gully and rill erosion types selected then using the filed survey and satellite images (Landsat 8 images from 2022) divided to erosional, depositional and stable areas. In this study 70 randomized sampling points using the Create Random Points tool in ArcGIS10.2 was created. Moreover, in the mentioned tool, the Constraining Feature Class for the polygon of the study area was set in order to limit the randomized points in the border of study area. Finally, 14 points as depositional and 12 points as erosional surfaces was highlighted and other randomized points was defined as Non-erosional surfaces. Based on soil erosional and depositional surfaces the soil sampling accomplished using the standard methods and soil samples as representative of whole area was analyzed. The physicochemical parameters of the soil consist of soil texture components (clay, silt and sand), bulk density, organic matter, phosphorus, lime, electrical conductivity, pH and soil gypsum were measured. Remote sensing indices including NDVI, SAVI, CI, BI, NDSI, NDMI and SI to assess the possibility of classification the erosional and depositional surfaces based on Landsat 8 images were calculated and mapped. In addition, supervised classification algorithms including Parallel levels, Mahalonobis distance, Maximum likelihood, Minimum distance, Neural network and Support vector machine (SVM) were used and evaluated using Kappa coefficient and overall accuracy. The statistical analyses with SPSS 26, supervised classification of remote sensing data in ENVI 4.7 and the separation of erosional and depositional surfaces in Google Earth Engine (GEE) were performed.          

Results:

The results of the average comparison test showed the significant difference between erosional and depositional surfaces for clay content and gypsum therefore, they can be used as parameters to separate surfaces, but for other parameters, no significant difference was observed. Indeed in the erosional surfaces the amount of clay was lower and amount of gypsum was higher than depositional surfaces. Furthermore the results depicted that there was a significant relation (R2:0.75) between elevation (m) and NDVI for depositional surfaces. The remote sensing (RS) indices including BI, SI and NDSI can be effectively applied to distinguish eroded surfaces from depositional surfaces in the study area.

Conclusion:

In general demarcation modeling is usable to separate the erosional and depositional surfaces in the watersheds therefore can be applied as a management tool to conserve the soils against erosive factors. Moreover, mapping the RS indices in the watersheds is a visual tool to recognize the critical areas.

Author Contributions

All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

If the study did not report any data, you might add “Not applicable” here.

Acknowledgements

The authors would like to thank all participants of the present study.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Akbari S., & Vaezi A.R. (2015). Investigating aggregates stability against raindrops impact in some soils of a semi- arid region, North West of Zanjan. 2015. Water and Soil Science, 25 (2): 65-77. (in Persian).
Cheng, Z., Lu, D., Li, G., Huang, J., Sinha, N., Zhi, J., & Li, S. (2018). A random forest-based approach to map soil erosion risk distribution in Hickory Plantations in western Zhejiang Province, China. Remote Sensing, 10(12), 1899.
Douaoi, E. ,Nicolas, H., & Walter, C. (2006). Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma, 134(1-2), 217-230.
Eswaran, H., Lal, R., & Reich, P.F.( 2001). Land degradation: an overview. In: Bridges, E.M., Hannam, I.D., Oldeman, L.R., Penning de Vries,  .W.T.,Scherr, S.J., Sombatpanit, S. (Eds.), Response to Land Degradation. Science Publishers Inc, Enfield, NH, USA, pp. 20– 35.
Fernández, S., Marquínez, J., & Menéndez-Duarte, R. (2008). A sapping erosion susceptibility model for the southern Cantabrian Range, North Spain. Geomorphology, 95(3-4), 145-157.
Foody, G. M. (2001). Monitoring the magnitude of land-cover change around the southern limits of the Sahara. Photogrammetric Engineering and Remote Sensing, 67(7), 841-848.
Garosi, Y., Sheklabadi, M., Pourghasemi, H. R., Besalatpour, A. A., Conoscenti, C., & Van Oost, K. (2018). Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma, 330, 65-78.
Garosi, Y., Sheklabadi, M., Pourghasemi, H. R., Besalatpour, A. A., Conoscenti, C., & Van Oost, K. (2018). Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma, 330, 65-78.
Gopinath, K. P., Nagarajan, V. M., Krishnan, A., & Malolan, R. (2020). A critical review on the influence of energy, environmental and economic factors on various processes used to handle and recycle plastic wastes: Development of a comprehensive index. Journal of Cleaner Production, 274, 123031.
Guerschman, J. P., Scarth, P. F., McVicar, T. R., Renzullo, L. J., Malthus, T. J., Stewart, J. B., ... & Trevithick, R. (2015). Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data. Remote Sensing of Environment, 161, 12-26.
Hadeel, A., Jabbar, M., & Chen, X. (2011). Remote sensing and GIS application in the detection of environmental degradation indicators. Geo-spatial Information Science, 14(1), 39-47.
Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3), 295-309.
Karami, A., Khoorani, A., Noohegar, A., Shamsi, S. R. F., & Moosavi, V. (2015). Gully erosion mapping using object-based and pixel-based image classification methods. Environmental & Engineering Geoscience, 21(2), 101-110.
Khan, N. M., Rastoskuev, V. V., Sato, Y., & Shiozawa, S. (2005). Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agricultural Water Management, 77(1-3), 96-109.
Kreyszig, E. (2015). SanjeevAhuja. Applied Mathematics-I, Wiley India Publication, Reprint.
Qi, L., Zhou, Y., Van Oost, K., Ma, J., van Wesemael, B., & Shi, P. (2024). High-resolution soil erosion mapping in croplands via Sentinel-2 bare soil imaging and a two-step classification approach. Geoderma, 446, 116905.
Rejeki, S., Meidina, R., Hapsari, M., Setyaningsih, R. & Azura, R. (2021). Context-based tasks in mathematics textbooks for vocational high school students. Journal of Physics: Conference Series. 1776. 012030. 10.1088/1742-6596/1776/1/012030.
Sayão, V. M., Demattê, J. A., Bedin, L. G., Nanni, M. R., & Rizzo, R. (2018). Satellite land surface temperature and reflectance related with soil attributes. Geoderma, 325, 125-140.
Shahbazi, K., Salajagheh, A., Jafari, M., Ahmadi, H., Nazarisamani, A., & Khosrowshahi, M. (2017). Comparative Assessment of Gully Erosion and Sediment Yield in Different Rangelands and Agricultural Areas in Ghasr-e-Shirin, Kermanshah, Iran. Journal of Rangeland Science, 7(3), 296-306.
Shoshany, M., Goldshleger, N., & Chudnovsky, A. (2013). Monitoring of agricultural soil degradation by remote-sensing methods: A review. International Journal of Remote Sensing, 34(17), 6152-6181.
Shruthi, R. B., Kerle, N., Jetten, V., Abdellah, L., & Machmach, I. (2015). Quantifying temporal changes in gully erosion areas with object oriented analysis. Catena, 128, 262-277.
Sterk, G., Riksen, M. J. P. M., & Goossens, D. (2001). Dryland degradation by wind erosion and its control. Annals of arid Zone, 40(3), 351-368.
Vaezi A.L., Bahrami H., Sadeghi H., & Mahdian M. (2008). Modeling the USLE K-factor for calcareous soils in northwestern Iran. Geomorphology 97 (3): 414-423.
Vaezi A.R., & Ebadi, M. (2016). Particle Size Distribution of Surface-Eroded Soil in Different Rainfall Intensities and Slope Gradients. Journal of Water and Soil. Vol. 31, No. 1, Mar.-Apr. 2017, p. 216-229.
Vrieling, A. (2006). Satellite remote sensing for water erosion assessment: A review. , 65(1), 0–18. doi:10.1016/j.catena.2005.10.005. 
Vrieling, A., Sterk, G., & Vigiak, O. (2006). Spatial evaluation of soil erosion risk in the West Usambara Mountains, Tanzania. Land Degradation & Development, 17(3), 301-319.
Wang, J., Zhen, J., Hu, W., Chen, S., Lizaga, I., Zeraatpisheh, M., & Yang, X. (2023). Remote sensing of soil degradation: Progress and perspective. International Soil and Water Conservation Research, 11(3), 429-454.
Wilson, E. H., & Sader, S. A. (2002). Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment, 80(3), 385-396.
Xu, H., Hu, X., Guan, H., Zhang, B., Wang, M., Chen, S., & Chen, M. (2019). A remote sensing based method to detect soil erosion in forests. Remote Sensing, 11(5), 513.
Zhang, H., Yu, D., Dong, L., Shi, X., Warner, E., Gu, Z., & Sun, J. (2014). Regional soil erosion assessment from remote sensing data in rehabilitated high density canopy forests of southern China. Catena, 123, 106-112.