تخمین نرخ رسوب‌گذاری و ظرفیت ذخیره‌سازی مخزن سدها با استفاده از تصاویر ماهواره‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی آب دانشکده آب و خاک دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشجوی کارشناسی ارشد علوم و مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 دانشیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

مخازن سدها برای ذخیره آب باران و سیلاب‌ها و استفاده در زمان کمبود آب بسیار مهم هستند. در اکثر مخازن ظرفیت ذخیره‌سازی به دلیل تجمع رسوبات پیوسته کاهش می‌یابد. رسوب‌گذاری در مخازن ذخیره آب پیامدهای عمده‌ای بر ظرفیت ذخیره‌سازی، طول عمر و کیفیت آب مخزن دارد. پژوهش حاضر با هدف ارزیابی تغییرات زمانی حجم آب ذخیره‌شده در مخزن و تخمین نرخ رسوب‌گذاری در آن به‌کمک سنجش از دور انجام شده است. برای این منظور مخزن  O. H. Ivie در کشور آمریکا به عنوان منطقه موردمطالعه انتخاب شد. این پژوهش شامل مراحل مختلف از جمله پیش‌پردازش تصاویر ماهواره لندست 8، مدل‌سازی و شناسایی پیکسل‌های آب با استفاده از شاخص MNDWI، تخمین ظرفیت ذخیره مخزن و مقایسه نتایج با داده‌های توپوگرافی جهت ارزیابی نرخ رسوب‌گذاری می‌باشد. طبق نتایج، میانگین خطاهای محاسبه حجم آب ذخیره‌شده در مخزن حدود 9 درصد به‌دست آمد. بر این اساس ظرفیت ذخیره مخزن O. H. Ivie از 695 میلیون مترمکعب در ابتدای بهره‌برداری (سال 1991) به 472 میلیون متر‌مکعب در سال 2019 کاهش یافته است. نتایج نشان داد که ظرفیت از دست‌رفته ذخیره مخزن بر اثر ته‌نشینی رسوبات حدود 32 درصد حجم اولیه و نرخ رسوب‌گذاری سالانه 4/1 درصد است. همچنین با ارزیابی نتایج به‌دست‌آمده میانگین ارتفاع رسوب ته‌نشین شده در مخزن بین سال‌های 2004 تا 2019 حدود 9 متر برآورد شد. این پژوهش تائید کرد که سنجش‌از‌دور می‌تواند با صرف کمترین هزینه و زمان، تغییرات ظرفیت ذخیره و نرخ رسوب‌گذاری در مخزن را تخمین بزند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of sedimentation rate and storage capacity of reservoir dams using satellite imagery

نویسندگان [English]

  • Abdolreza Zahiri 1
  • Hamed Feiz Abady 2
  • Khalil Ghorbani 3
1 Associated Professor, Dep. of Water Engineering, Faculty of Water and Soil, Gorgan University of Agricultural Sciences and Natural Resources, Golestan.
2 MSc Student, Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Associated Prof, Water Engineering Department, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

reservoirs are very important for storing rainwater and floods, and water shortage management. In nearly all reservoirs, storage capacity is steadily lost due to trapping and accumulation of sediment. Sediment deposition in water reservoirs has major implications for storage capacity, reservoir lifetime and water quality. The present study aimed to evaluate the temporal dynamics of water stored and sedimentation rate in a reservoir using remote sensing data. For this purpose, the study was carried out in O. H. Ivie reservoir located in the America country. The techniques used to carry out this study have been pre-processing of Landsat 8 images, modeling and identifying water pixels using MNDWI index, evaluating reservoir capacity, and compression of results with recent bathymetric survey data to assessment sedimentation rate. According to the results, the average errors of computing the volume of water stored in the reservoir was about 9%. Based on this, the storage capacity of O. H. Ivie reservoir has decreased from 695 million cubic meters at the beginning of operation (1991) to 472 million cubic meters in 2019. The results showed that the lost storage capacity of the reservoir due to sedimentation is about 32% of the original volume and the annual sedimentation rate is 1.4%. Also, by evaluating the obtained results, the average height of sediment deposited in the reservoir between 2004 and 2019 was estimated to be about 9 meters. This research confirmed that remote sensing can estimate storage capacity and sedimentation rate in the reservoir with minimal cost and time.

کلیدواژه‌ها [English]

  • Landsat 8 OLI
  • MNDWI index
  • Reservoir dam
  • Sedimentation rate
  • Storage capacity

Estimation of sedimentation rate and storage capacity of reservoir dams using satellite imagery

EXTENDED ABSTRACT

Introduction

For thousands of years humans have relied on reservoirs—regulated natural lakes and human made ones, for water supply, irrigation, and more recently hydropower generation. Reservoirs created by impounding sediment-laden streams infill over time, reducing storage capacity and altering water quality. sedimentation rates are poorly understood due to sparse bathymetry survey data and challenges in modeling sedimentation sequestration. The loss of reservoir capacity especially in developing countries brings with it adverse environmental, social and economic problems to people relying on these dams Sediment deposition in water reservoirs has major implications for storage capacity, reservoir lifetime, and water quality. Changes in rainfall patterns and land use will consequently alter the rate of erosion and therefore have a direct effect on sedimentation rates. Therefore, it is imperative that reservoir capacity re-assessment studies are regularly carried out. current methods of sediment analysis being employed in many countries are resource demanding in a context of financial and material resources scarcity. Reservoir capacity estimation and sedimentation analysis have commonly been conducted through the use of either direct or indirect methods of sediment quantification. direct methods refer to hydrographic survey techniques, which measure the actual sediments in the reservoir. Indirect methods refers to sediment sampling and soil loss models which can be used to indirectly quantify expected sediment flow into a reservoir without conducting any direct measurements in the reservoir. we proposed a novel approach to estimate reservoir sedimentation rates and storage capacity losses using Landsat-8 OLI satellites and daily in situ water levels.

Material and Methods

The study sought to monitor sedimentation of O. H. Ivie reservoir in the state of Texas in USA. Six Landsat 8 OLI datasets for the period 2016 to 2019 were used. Remotely sensed sedimentation data was analyzed using the MNDWI index method. The study employed a longitudinal survey design. Longitudinal survey design allowed the use of data collected overtime between years 1991 and 2019. Dam level and remotely sensed data was used in the study and the Modified Normalized Difference Water Index (MNDWI) method was employed for data analysis. After computing the water surface areas, the reservoir capacity between two consecutive reservoir water levels was computed by the Prismoidal method. Finally, we estimated the sediment volume and sedimentation rate based on the difference between the near-present storage capacity and the original maximum storage in design-shown. DAHITI and TWDB database were used to validate the data.

Results and Discussion

By comparing the results of estimating the volume of water stored in the O. H. Ivie reservoir with the data of DAHITI database, the result shown, the average error of calculating the volume of water stored was found to be about 9%. Based on TWDB database and the results, the storage capacity of O. H. Ivie reservoir has decreased from 695 million cubic meters at the beginning of operation (1991) to 472 million cubic meters in 2019. The results showed that the lost storage capacity of the reservoir due to sedimentation is about 32% of the original volume and the annual sedimentation rate is 1.4%. Also, the lost storage volume of the reservoir between 2004 and 2019 was about 198 million cubic meters. by evaluating the obtained results, the average height of sediment deposited in the reservoir between 2004 and 2019 was estimated to be about 9 meters.

Conclusion

The study has indicated that the use of GIS and remote sensing techniques enabled a fast and reasonably accurate estimation of live storage capacity losses due to sedimentation. The approach has also been found to be cost-effective and convenient approaches to estimate the elevation–area–capacity curves for the reservoirs. The results have also indicated that this approach for sedimentation surveys can be carried out at smaller

intervals and longer periods than Conventional methods, Remote sensing and GIS can be used to a large extent, to overcome the difficulty in the collection, transfer, and sharing of a large amount of bathymetric data. Moreover, the proposed methodology can be used largely, to overcome information scarcity problems when the field survey data and physically based models are unavailable. The results of the present study can assist in developing effective management strategies and providing realistic options to policymakers for managing soil erosion hazards most efficiently for prioritizing different regions of the reservoirs for remedial treatments.

Chomba, I. C. (2016). Sedimentation and its effects on selected small dams in Lusaka Province, Zambia (Doctoral dissertation, University of Zambia).
Droujko, J., Sudha, S. H., Singer, G., & Molnar, P. (2023). Sediment source and sink identification using Sentinel-2 and (kayak-based) lagrangian river turbidity profiles on the Vjosa River. EGUsphere, 2023, 1-24.
Gonzalez Rodriguez, L., McCallum, A., Kent, D., Rathnayaka, C., & Fairweather, H. (2023). A review of sedimentation rates in freshwater reservoirs: recent changes and causative factors. Aquatic Sciences, 85(2), 60.
Haregeweyn, N., Melesse, B., Tsunekawa, A., Tsubo, M., Meshesha, D., & Balana, B. B. (2012). Reservoir sedimentation and its mitigating strategies: a case study of Angereb reservoir (NW Ethiopia). Journal of Soils and Sediments, 12, 291-305.
Jain, S. K., Singh, P., & Seth, S. M. (2002). Assessment of sedimentation in Bhakra Reservoir in the western Himalayan region using remotely sensed data. Hydrological Sciences Journal, 47(2), 203-212.
Li, L., Su, H., Du, Q., & Wu, T. (2021). A novel surface water index using local background information for long term and large-scale Landsat images. ISPRS journal of photogrammetry and remote sensing, 172, 59-78.
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17(7), 1425-1432.
Mueller, J. M. (1990). Population dynamics of the Concho water snake (Doctoral dissertation, Texas A&M University).
Nyikadzino, B., & Gwate, O. (2021). Estimation of Reservoir Capacity and Sedimentation Rate Using Direct and Indirect Methods. Int J Earth Sci Geophys, 7, 045.
Patni, B. S., Patel, H. R., & Bhangaonkar, P. D. (2017). Assessment of sedimentation in Ajwa reservoir in the Vadodara Gujarat region using remotely sensed data. International Journal of Advance Engineering and Research Development, 16-20.
Pham-Duc, B., Frappart, F., Tran-Anh, Q., Si, S. T., Phan, H., Quoc, S. N., ... & Viet, B. D. (2022). Monitoring lake volume variation from space using satellite observations—A case study in Thac Mo Reservoir (Vietnam). Remote Sensing, 14(16), 4023.
Schwatke, C., Dettmering, D. and Seitz, F., (2020). Volume variations of small inland water bodies from a combination of satellite altimetry and optical imagery. Remote Sensing, 12(10), p.1606.
Schwatke, C., Scherer, D., & Dettmering, D. (2019). Automated extraction of consistent time-variable water surfaces of lakes and reservoirs based on landsat and sentinel-2. Remote Sensing, 11(9), 1010.
Sekertekin, A., Abdikan, S., & Marangoz, A. M. (2018). The acquisition of impervious surface area from LANDSAT 8 satellite sensor data using urban indices: a comparative analysis. Environmental monitoring and assessment, 190, 1-13.
Singh, M. C., Prashar, A., Singh, J., & Kumar, S. (2023). Reservoir capacity loss and sedimentation assessment of Dholbaha dam located in Punjab, India using remote sensing and bathymetric survey techniques. Water Practice & Technology, 18(11), 2901-2922.
Teixeira Pinto, C., Jing, X., & Leigh, L. (2020). Evaluation analysis of Landsat level-1 and level-2 data products using in situ measurements. Remote sensing, 12(16), 2597.
Tesfaye, A. T., Moges, M. A., Moges, M. M., Worqlul, A. W., Defersha, D. T., & Wassie, A. B. (2023). Reservoir sedimentation evaluation using remote sensing and GIS approaches for the reservoirs in the upper Blue Nile Basin. Sustainable Water Resources Management, 9(1), 23.
Wagh, S., & Manekar, V. (2021). Assessment of reservoir sedimentation using satellite remote sensing technique (SRS). Journal of The Institution of Engineers (India): Series A, 102(3), 851-860.
Work, E. A., & Gilmer, D. S. (1976). Utilization of satellite data for inventorying prairie ponds and lakes. Photogrammetric Engineering and Remote Sensing, 42(5), 685-694.
Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of remote sensing, 27(14), 3025-3033.
Yao, F., Minear, J. T., Rajagopalan, B., Wang, C., Yang, K., & Livneh, B. (2023). Estimating Reservoir Sedimentation Rates and Storage Capacity Losses Using High‐Resolution Sentinel‐2 Satellite and Water Level Data. Geophysical Research Letters, 50(16), e2023GL103524.