استفاده از روش یادگیری ماشین به‌منظور برآورد تبخیر و تعرق(مطالعه موردی: استان سمنان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه بیابان زدایی، دانشکده کویر شناسی، دانشگاه سمنان، سمنان، ایران

2 گروه بیابان زدایی، دانشکده کویرشناسی، دانشگاه سمنان، سمنان، ایران

چکیده

تبخیر و تعرق (ET) در مناطق خشک و نیمه‌خشک از اهمیت زیادی برخوردار بوده و برآورد دقیق آن در برنامه‌ریزی و مدیریت شیوه‌های آبیاری حائز اهمیت  است. استان سمنان دارای تعداد محدودی ایستگاه سینوپتیک و تبخیرسنجی است که کمبود داده‌های تبخیر و تعرق سبب شده که برآورد مکانی آن با مشکل مواجه گردد. در این مطالعه از محصول تبخیر و تعرق حاصل از داده‌های بازتحلیل ERA5-Land به همراه متغیرهای کمکی ارتفاع و دما برای برآورد تبخیر و تعرق در منطقه موردمطالعه استفاده شد. همچنین به‌منظور برقراری ارتباط بین متغیرهای کمکی و داده‌های تبخیر و تعرق از روش یادگیری ماشین جنگل تصادفی (RF) استفاده شد و نقشه تبخیر و تعرق در منطقه موردمطالعه با استفاده از مدل RF تهیه شد. دقت مدل RF در برآورد تبخیر و تعرق با استفاده از چهار معیار آماری شامل ضریب همبستگی (r)، مقدار اریبی (BIAS)، میانگین ریشه مربعات خطا (RMSE) و شاخص KGE مورد ارزیابی قرار گرفت. نتایج مرحله اعتبارسنجی، کارایی بالای مدل RF را نشان داد (R² = 0.95،  4.1-BIAS= ،  RMSE = 98.6 و KGE = 0.92). همچنین مشخص شد عملکرد مدل RF در برآورد تبخیر و تعرق با استفاده از متغیرهای ورودی به وابستگی خطای مدل (BIAS) به توپوگرافی بستگی دارد و متغیر ارتفاع عامل مهمی در برآورد تبخیر و تعرق محسوب می‌گردد. نتایج این مطالعه نشان داد که استفاده از داده‌کاوی و پردازش در محیط برنامه‌نویسی R، در مناطقی با تعداد محدود ایستگاه‌ هواشناسی، برآورد دقیق میزان تبخیر و تعرق در مناطق خشک و نیمه‌خشک را ممکن می‌سازد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using Machine Learning Method to Estimate Evapotranspiration (Case Study: Semnan Province)

نویسندگان [English]

  • Hesam Heravi 1
  • Ali-Asghar Zolfaghari 2
1 Department of Desertification, Faculty of Desert Studies, Semnan University, Semnan, Iran.
2 Department of Desertification, Faculty of Desert Studies, Semnan University, Semnan, Iran
چکیده [English]

Evapotranspiration (ET) plays a crucial role in arid and semi-arid regions, and its precise estimation of ET is essential for effective irrigation planning and management. Semnan province faces challenges due to a scarcity of synoptic and evaporation stations, making spatial estimation of ET difficult. This study utilized the evapotranspiration product from the ERA5-Land reanalysis dataset, in conjunction with auxiliary variables such as elevation and temperature, to estimate ET in the study area. The Random Forest (RF) model was employed to establish the relationship between auxiliary variables and ET data, resulting in the creation of an ET map using the RF model. The accuracy of the RF model in estimating ET was assessed against observational data using four statistical criteria: R², BIAS, RMSE, and KGE. The validation results demonstrated the high efficiency of the RF model (R² = 0.95, BIAS = -4.1, RMSE = 98.6, and KGE = 0.92). It was observed that the RF model's performance in ET estimation is influenced by the relationship between model error (BIAS) and topography, with elevation playing a significant role in ET estimation accuracy. This study underscores the effectiveness of utilizing data mining and processing techniques within the R programming environment to accurately estimate ET in regions with limited weather stations, particularly in arid and semi-arid areas. By leveraging these methods, it becomes possible to enhance the estimation of evapotranspiration in such challenging environments.

کلیدواژه‌ها [English]

  • Keywords: Elevation
  • ERA5-Land
  • Random Forest Model (RF)
  • Temperature

Using Machine Learning Method to Estimate Evapotranspiration

 (Case Study: Semnan Province)

 

EXTENDED ABSTRACT

 

Background and purpose:

Evapotranspiration (ET) plays a crucial role in the hydrological cycle and water management within the agricultural sector, aiding in the estimation of necessary water resources and understanding the impacts of climate change. Additionally, precise estimation of evapotranspiration is vital for effective irrigation planning and management strategies. The objective of this research is to develop a precise annual ET map of Semnan province using the RF model. Furthermore, the study aims to explore the relationship between predicted data and observational data to assess the significance of auxiliary variables in evapotranspiration estimation.

Materials and methods:

Semnan province, spanning 96,816 km2, faces challenges in estimating evapotranspiration (ET) due to a limited number of synoptic and evaporation stations. To address this issue, an alternative data-driven model with minimal data requirements was employed. During the statistical period of 1993-2020, 6 synoptic stations and 5 evaporation stations were utilized for evapotranspiration estimation. Initially, the study utilized the evapotranspiration product from the ERA5-Land reanalysis dataset, along with auxiliary variables such as Digital Elevation Model (DEM) and temperature, to estimate evapotranspiration in the study area. Additionally, the Random Forest (RF) method was employed to establish the connection between auxiliary variables and evapotranspiration data, leading to the creation of an evapotranspiration map using the RF model. Subsequently, the model's accuracy in estimating ET was evaluated by comparing it to observational data using four statistical criteria: Pearson correlation coefficient (R²), root mean square error (RMSE), BIAS, and Kling–Gupta efficiency (KGE).

Findings:

The results of the validation phase demonstrated the high efficiency of the RF model, with values of R² = 0.95, BIAS = -4.1, RMSE = 98.6, and KGE = 0.92. Analysis of the ET data generated by the RF model revealed lower ET levels in the northern regions of the province. In the central to northern areas, average ET levels were observed, correlating with the region's average elevation. Conversely, the highest ET levels were recorded in most of the eastern and southern desert regions of the province. Furthermore, independent analysis of the monitored stations highlighted the RF model's reliance on topography. The elevation variable emerged as a crucial factor in systematically correcting model errors to enhance ET estimation accuracy. These findings underscored the effectiveness of auxiliary variables in a non-linear model like the RF model for accurately estimating complex and spatially variable characteristics such as ET. Notably, the model error (BIAS) of the ERA5-Land reanalysis dataset was rectified as a significant factor in determining model accuracy through the RF algorithm. Unlike the RF model, ERA5-Land employs spatial interpolation, enhancing predictions by incorporating covariates that directly impact ET, such as topographic variables.

Conclusion:     

The results indicated that using RF model with different number of input variables to prepare ET map and processing in R programming environment provides proper accuracy in ET estimation for arid and semi-arid regions. 

 

Abed, M., Imteaz, M.A., Ahmed, AN., & Huang YF. (2022). Modelling monthly pan evaporation utilising Random          Forest and deep learning algorithms. Scientific Reports, 12(1), 1-29. https://dx.doi.org/10.1038/s41598-022-17263-3.
Ahmadi, F., Mehdizadeh, S., Mohammadi, B., Bao Pham, Q., Doan, T.N.C., & Vo, N.D. (2021). Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation. Agricultural Water Management, 244, 106622. https://doi.org/10.1016/j.agwat.2020.106622.
Amini, E., Zolfaghari, A.A., kaboli, S.H., & Rahimi, M. (2022). Estimation of Rainfall Erosivity Map in Areas with Limited Number of Rainfall Station (Case study: Semnan Province). Iranian Journal of Soil and Water Research, 53(9), 2027-2044. https://doi.org/ 10.22059/IJSWR.2022.343710.669279. (In Persian).
Amjad, M., Yilmaz, M.T., Yucel, I., & Yilmaz K.K. (2020). Performance Evaluation of Satellite- and Model-Based Precipitation Products over Varying Climate and Complex Topography. Journal of Hydrology, 584, 124707. https://doi.org/10.1016/j.jhydrol.2020.124707.
Bandhauer, M., Isotta, F., Lakatos, M., Lussana, C., Baserud, L., Izsak, B., Szentes, O., Tveito, O.E., & Frei, C. (2022). Evaluation of daily precipitation analyses in E-OBS (v19.0e) and ERA5 by comparison to regional high-resolusion datasets in European regions. International Journal of Climatology, 42(1), 727-747. https://doi.org/10.1002/joc.7269.
Brust, C., Kimball, J.S., Maneta, M.P., Jencso, K., He, M., & Reichle, R.H. (2021). Using SMAP Level-4 soil moisture to constrain MOD16 evapotranspiration over the contiguous USA. Remote Sensing of Environment. 255(1), 112277. https://doi:10.1016/j.rse.2020.112277.
Chen, J.M., Chen, X., Ju, W., Geng, X., & Zhang, X. (2005). Distributed hydrological model for mapping evapotranspiration using remote sensing inputs. Journal of Hydrology, 305(1-4), 15-39. https://doi.org/10.1016/j.jhydrol.2004.08.029.  
Chen, Z., Sun, S., Wang, Y., Wang, Q., & Zhang, X. (2020). Temporal convolution-network-based models for modeling maize evapotranspiration under mulched drip irrigation. Computers and Electronics in Agriculture, 169, 105206. https://doi.org/10.1016/j.compag.2019.105206.
Crossett, C.C., Betts, A.K., Dupigny-Giroux, L.A.L., & Bomblies, A. (2020). Evaluation of daily precipitation from the ERA5 global reanalysis against GHCN observations in the northeastern United States. Climate, 8(12), 1-14. https://doi.org/ 10.3390/cli8120148.
Cunha, A.C., Filho. L.R.A.G., Tanaka, A.A., Goes, B.C., & Putti, F.F. (2021). Influence of the estimated global solar radiation on the reference evapotranspiration obtained through the penman-monteith FAO 56 method. Agricultural Water Management, 243, 106491.  https://doi.org/10.1016/j.agwat.2020.106491.
Feng, Y., Cui, N., Gong, D., Zhang, Q., & Zhao, L. (2017). Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agricultural Water Management, 193, 163–173. https://doi.org/10.1016/j.agwat.2017.08.003.
Guo, B., Zhang, D., Pei, L., Su, Y., Wang, X., Bian, Y., Zhang, D., Yao, W., Zhou, Z., & Guo, L. (2021).  Estimating PM2.5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal scales across China in 2017. Science of The Total Environment, 778, 146288. https://doi.org/10.1016/j.scitotenv.2021.146288.
Gupta, H.V., Kling, H., Yilmaz, K., & Martinez, G. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2): 80-91. https://doi.org/10.1016/j.jhydrol.2009.08.003.
Hameed, M.M., AlOmar, M.K., Razali, S.F.M., Khalaf, A.M.K., Baniya, W.J., Sharafati, A., & AlSaadi, M.A. (2021). Application of Artificial Intelligence Models for Evapotranspiration Prediction along the SouthernCoast of Turkey. Hindawi, 8850243. https://doi.org/10.1155/2021/8850243.
Hamm, A., Arndt, A., Kolbe, C., Wang, X., Thies, B., Boyko, O., Reggiani, P., Scherer, D., Bendix, J., & Schneider, C. (2020). Intercomparison of gridded precipitation datasets over a sub-region of the Central Himalaya and the southwestern Tibetan plateau. Water, 12(11), 1-23. https://doi.org/10.3390/w12113271.
Hengl, T., Nussbaum, M., Wright, M.N., Heuvelink, G.B., & Graler, B. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ (Environmental Science), 6, 1-49. https://doi: 10.7287/peerj.preprints.26693v2.
Herrera, S., Cardoso, R.M., Soares, P.M., Espirito-Santo, F., Viterbo, P., & Gutierrez, J.M. (2019). A new gridded dataset of daily precipitation and temperatures over Iberia. Earth System Science Data, 11(4), 1947–1956. https://doi.org/10.5194/essd-11-1947-2019.
Kisi, O. (2016). Modeling reference evapotranspiration using three different heuristic regression approaches. Agricultural Water Management, 169, 162–172. https://doi.org/10.1016/j.agwat.2016.02.026.
Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425, 264-277. https://doi.org/10.1016/j.jhydrol.2012.01.011.
Knoben, W.J.M., Freer, J.E., & Woods, R.A. (2019). Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences, 23 (10), 4323–4331. https://doi.org/10.5194/hess-23-4323-2019. 
Krajewski, W.F., Ceynar, D., Demir, I., Goska, R., Kruger, A., Langel, C., Mantilla, R., Niemeier, J., Quintero, F., Seo, B.C., Small, S.J., Webber, L.J., & Young, N.C. (2017). Real-time flood forecasting and information system for the state of Iowa. Bulletin of the American Meteorological Society, 98(3), 539–554. https:// doi.org/ 10. 1175/BAMS-D- 15- 00243.1.
Li, Y., Wang, W., Wang, G., & Tan, Q. (2022). Actual evapotranspiration estimation over the Tuojiang River Basin based on a hybrid CNN-RF model. Journal of Hydrology, 610, 127788. https://doi.org/10.1016/j.jhydrol.2022.127788
Rashid Niaghi, A., Hassanijalilian, O., & Shiri, J. (2021). Estimation of Reference Evapotranspiration Using Spatial and Temporal Machine Learning Approaches. Hydrology, 8(1), 1-15. https://doi.org/10.3390/hydrology8010025.
Shiri, J. (2018). Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology. Journal of Hydrology, 561, 737–750. https://doi.org/10.1016/j.jhydrol.2018.04.042.
Silva Junior, J.C., Medeiros, V., Garrozi, C., Montenegro, A., & Goncalves, G.E. (2019). Random forest techniques for spatial interpolation of evapotranspiration data from Brazilian’ Northeast. Computers and Electronics in Agriculture, 166, 105017. https://doi.org/10.1016/j.compag.2019.105017.
Strong, C., Khatri, K.B., Kochanski, A.K., Lewis, C.S., & Allen, L.N. (2017). Reference evapotranspiration from coarse-scale and dynamically downscaled data in complex terrain: Sensitivity to interpolation and resolution. Journal of Hydrology, 548, 406–418. https:// doi.org/ 10. 1016/j.jhydr ol. 2017. 02. 045.
Torres, A.F., Walker, W.R., & McKee, M. (2011). Forecasting daily potential evapotranspiration using machine learning and limited climatic data. Agricultural Water Management, 98(4), 553-562. https://doi.org/10.1016/j.agwat.2010.10.012.
Wang, S., Lian, J., Peng, Y., Hu, B., & Chen, H. (2019). Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China. Agricultural Water Management, 221, 220–230. https:// doi.org/ 10. 1016/j.agwat. 2019. 03. 027.
Wang, Y., Zhang, Y., Yu, X., Jia, G., Liu, Z., Sun, L., Zheng, P., & Zhu, X. (2021). Grassland soil moisture fluctuation and its relationship with evapotranspiration. Ecological Indicators, 131, 108196. https://doi.org/10.1016/j.ecolind.2021.108196.
Wilding, L.G. (1985, 30 Nov–1 Dec). Soil spatial variability: Its documentation, accommodation and implication to soil surveys. Paper presented at the Proceedings of a workshop of the ISSS and the SSSA, Las Vegas, USA.  
Wu, L., Peng, Y., Fan, J., & Wang, Y. (2019). Machine learning models for the estimation of monthly mean daily reference evapotranspiration based on cross-station and synthetic data. Hydrology Research, 50(6), 1730–1750. https:// doi.org/ 10. 2166/nh. 2019. 060.
Wu, M., Feng, Q., Wen, X., Deo, R., Yin, Z., Yang, L., & Sheng, D. (2020). Random forest predictive model development with uncertainty analysis capability for the estimation of evapotranspiration in an arid oasis region. Hydrology Research, 51(4), 648–665. https://doi.org/10.2166/nh.2020.012.
Zandler, H., Haag, I., & Samimi, C. (2019). Evaluation needs and temporal performance differences of gridded precipitation products in peripheral mountain regions. Scientific Reports, 9(1), 1-15. https://doi.org/10.1038/s41598-019-51666-z.