تعیین شدت بارندگی با استفاده از تجزیه و تحلیل فرکانس‎های صوتی حاصل از صدای برخورد قطرات باران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

2 عضو هیات علمی گروه علوم خاک، دانشکده کشاورزی، دانشگاه تبریز، ایران

3 عضو هیات علمی گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

چکیده

اطلاع از شدت و مدت بارندگی می‌تواند در بسیاری از تحلیل‌های زیست محیطی از جمله برآورد فرسایندگی باران و فرسایش خاک مفید باشد. دستگاه‎های مختلفی برای ثبت شدت و مدت بارندگی وجود دارد. اما خرید و نگهداری آن‌ها هزینه‌بر بوده و اغلب نیاز به متصدی جهت مراقبت از آن‌ها دارد. تحقیق حاضر به امکان‌سنجی استفاده از تحلیل سیگنال‌های صوتی ناشی از برخورد قطرات با سطوح و اجسام موجود در طبیعت برای تعیین ثبت شدت و مدت بارندگی پرداخته است. برای این منظور در آزمایشگاه گروه علوم خاک دانشکده کشاورزی دانشگاه تبریز در سال 1400، باران‌سازهایی طراحی شد که باران‌هایی با شدت‌های متفاوت ایجاد نماید. سپس سیگنال‌های صوتی ناشی از برخورد قطرات باران با سینی فلزی که در زیر باران قرار داده شد، توسط رکودر ضبط و جهت پردازش به رایانه انتقال داده شد. سپس در نرم افزار MATLAB، اندازه فرکانسی فایل‌های صوتی استخراج گردید. نتایج نشان داد که با افزایش شدت بارندگی، دامنه صوتی و اندازه فرکانسی سیگنال‌های صوتی افزایش یافت. سپس اندازه‌های فرکانسی در نرم‌افزار SPSS به روش خوشه‌بندی دو مرحله‌ای به‌طور خودکار در دو خوشه قرار گرفته شد. سپس میانگین و انحراف معیار هر خوشه محاسبه شده و با توجه به همبستگی هر کدام با یکدیگر و با شدت بارندگی، و جهت جلوگیری از پدیده چند هم‌خطی شدن تنها از میانگین خوشه دوم به عنوان ورودی مدل‌های برنامه‌ریزی بیان ژن و رگرسیون خطی استفاده شد. جهت آزمون دقت و صحت نتایج حاصل از مدل‌ها، از آماره‌های ضریب تبیین (R2)، ریشه میانگین مربعات خطا (RMSE)، میانگین هندسی نسبت خطا (GMER) و انحراف استاندارد هندسی نسبت خطا (GSDER) استفاده شد. مقادیر R2، RMSE (mm/h)، GMER (mm/h) و GSDER (mm/h) برای مدل برنامه‌ریزی بیان ژن در داده‌های سری آموزش به ترتیب برابر 97/0، 85/1، 11/1 و 09/1 و برای داده‌های سری اعتبارسنجی به ترتیب برابر 96/0، 05/2، 14/1 و 12/1 بدست آمد. در حالی که مقادیر معیارهای فوق در مدل رگرسیونی، برای داده‌های سری آموزش به ترتیب برابر 94/0، 74/2، 25/1 و 34/1 و برای داده‌های سری اعتبارسنجی به ترتیب برابر 92/0، 91/2، 28/1 و 37/1 بدست آمد. نتایج آماره‌های فوق حاکی از دقت و صحت نسبتا بیشتر مدل برنامه‌ریزی بیان ژن نسبت به مدل رگرسیونی و بیش‌برآوردی و پخشیدگی نسبتا زیادتر داده‌های تخمینی مدل رگرسیونی نسبت به مدل برنامه‌ریزی بیان ژن می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining the intensity of rainfall using the analysis of sound frequencies resulting from the impact of raindrops

نویسندگان [English]

  • Habib Palizvan-Zand 1
  • Abbas Ahmadi 2
  • Ali kadkhodaie 3
1 Department of Soil Science, Faculty of Agriculture, University of Tabriz,
2 Member of the academic staff of the Department of Soil Science, Faculty of Agriculture, Tabriz University, Iran
3 Member of the academic staff of the Department of Earth Sciences, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran
چکیده [English]

 
Knowing the intensity and duration of rainfall can be useful in many environmental analyses, including the estimation of rain erosivity and soil erosion. There are various devices to record the intensity and duration of rainfall, but purchasing and maintaining them are costly and often requires an operator to take care of them. The present research deals with the feasibility of using the analysis of sound signals caused by the collision of droplets with surfaces and objects in nature to determine the intensity and duration of rainfall. For this purpose, in the laboratory of the Department of Soil Science, Faculty of Agriculture, University of Tabriz, in 2022, rain simulators were designed to produce rains of different intensities, then, the sound signals caused by the impact of raindrops with the metal tray that was placed under the rain were recorded and transferred to the computer for processing. Then, the frequency size of audio files was extracted in MATLAB software. The results showed that with the increase in rainfall intensity, the audio amplitude and frequency size of the audio signals increased. Then, the frequency measurements were automatically placed in two clusters in SPSS software using the two-stage clustering method. Then the mean and standard deviation of each cluster were calculated and according to the correlation of each with each other and with the intensity of rainfall, and in order to avoid the multi-collinearity phenomenon, only the average of the second cluster was used as the input of gene expression programming and linear regression models. In order to test the accuracy and correctness of the results obtained from the models, the coefficient of determination (R2), root mean square error (RMSE), geometric mean of error ratio (GMER), geometric standard deviation of error ratio (GSDER) statistics were used. The values of R2, RMSE (mm/h), GMER(mm/h) and GSDER (mm/h) for the gene expression programming model in the training series data were 0.97, 1.85, 1.11 and 1.09 respectively and for the validation series data were 0.96, 2.05, 1.14 and 1.12 respectively. While the values of the above criteria in the regression model were 0.94, 2.74, 1.25 and 1.34 respectively for the training series data and 0.92, 2.91, 1.28 and 1.37 respectively for the validation series data. The results of the above statistics indicate that the gene expression programming model is relatively more accurate than the regression and overestimation model, and the estimated data of the regression model is relatively more spread than the gene expression programming model.

کلیدواژه‌ها [English]

  • Audio signals
  • Clustering
  • Rain simulator
  • Size frequency

EXTENDED ABSTRACT

Introduction:

The application of sound data in many topics related to water and soil resources has not been used seriously yet. Especially in Iran, sound wave research in natural resources and environment sciences is considered as a new research. Therefore, it is necessary to conduct more and more diverse research in connection with the use of this method in various branches of comprehensive management of water and soil resources. Therefore, less time and money and more accurate and correct solutions can be obtained in related issues which increased the accuracy of predictions and modeling. In this research, a new and innovative method for estimating rainfall intensity based on audio data collection and audio frequency analysis is presented.

 

Materials and Methods:

In the laboratory of the Department of Soil Science, Faculty of Agriculture, University of Tabriz in 2022, 40 intensities of rainfall were created using designed rain simulators. The audio signals generated in different intensities of rainfall were recorded for 1 minute in 3 repetitions by REMAX model RP1 recorder in wav format and transferred to the computer for processing and the frequency size of audio files was extracted in MATLAB software. Then, the frequency measurements were automatically placed in two clusters in SPSS software using the two-stage clustering method. Then, the mean and standard deviation of each cluster were calculated and according to the correlation of each with each other and with rainfall intensity, and in order to avoid the phenomenon of multi-collinearity, only the mean of the second cluster was used as the input of the gene expression programming and linear regression models. To test the accuracy of the results obtained from the models, the coefficient of explanation (R2), root mean square error (RMSE), geometric mean error ratio (GMER) and geometric standard deviation of error ratio (GSDER) statistics were determined.

 

Results Discussion:

Different intensities of rain were obtained using equation 7, which is the minimum rainfall intensity of 8 mm/h and the maximum rainfall intensity is 145 mm/h (Table 1). The greater the intensity of the rainfall, the greater the kinetic energy and, as a result, its erosive power. The sound amplitude of any rainfall intensity depends on the kinetic energy of that percipitation, as the intensity of the rainfall increases, the sound amplitude will also increase accordingly. According to equation (3), rains that have a larger sound amplitude also have a larger frequency size. Based on two-stage clustering, the obtained frequency sizes for different rainfall intensities were automatically placed into two clusters and the average and standard deviation of each cluster were determined. Considering the correlation between the mean and standard deviation of each cluster with each other and with the intensity of rainfall and avoiding the phenomenon of collinearity, the mean of the second cluster was used as an input for gene expression programming and linear regression models. The values of R2, RMSE (mm/h), GMER(mm/h) and GSDER (mm/h) for the gene expression programming model in the training series data were 0.97, 1.85, 1.11 and 1.09 respectively and for the validation series data were 0.96, 2.05, 1.14 and 1.12 respectively. While the values of the above criteria in the regression model were 0.94, 2.74, 1.25 and 1.34 respectively for the training series data and 0.92, 2.91, 1.28 and 1.37 respectively for the validation series data. The results of the above statistics indicate that the gene expression programming model is relatively more accurate than the regression and overestimation model, and the estimated data of the regression model is relatively more spread than the gene expression programming model.

 

Conclusion:

 The kinetic energy of the rain is usually calculated according to the intensity of the rain, because the intensity of the rain is a function of the diameter of the raindrops, or actually a function of the mass of the raindrops and their final speed, and therefore it will be proportional to the kinetic energy of the rain. The greater the intensity of the rainfall, the greater the kinetic energy and, as a result, its erosive power. The sound amplitude of any rainfall intensity depends on the kinetic energy of that rainfall, as the intensity of the rainfall increases, the sound amplitude will increase accordingly, and as the intensity of the rainfall decreases, the sound amplitude will also decrease. Rainfalls that have a larger sound range also have a larger frequency range.

Ahmadi, A., Palizvan Zand., P. & Palizvan Zand, H. (2017). Estimation of saturated hydraulic conductivity by using gene expression programming and ridge regression (A case study in East Azerbaijan province). Iranian Journal of soil and water research, 48(5), 1087-1095. (In Persian)
Al-Amri, N.S. & Subyani, A.M. (2017). Generation of rainfall intensity duration frequency (IDF) curves for ungauged sites in arid region. Earth Systems and Environment, 1(1), 1-12.
Alinezhadi, M., Mousavi, S.F. & Hosseini, Kh. (2021). Comparison of Gene Expression Programming (GEP) and Parametric and Non-parametric Regression Methods in the Prediction of the Mean Daily Discharge of Karun River (A case Study: Mollasani Hydrometric Station). Journal of Water and Soil Science, 25 (1), 43-62. (In Persian)
Alvisi, S., Mascellani, G., Franchini, M. & Bardossy, A. (2005). Water level forecasting through fuzzy logic and artificial neural network approaches. Hydrology and Earth System Sciences Discussions, 2(3), 1107-1145.
Beritelli, F., Capizzi, G., Sciuto, G.L., Napoli, C. & Scaglione, F. (2018). Rainfall estimation based on the intensity of the received signal in a LTE/4G mobile terminal by using a probabilistic neural network. IEEE Access, 6, 30865-30873.
Chiu, T., Fang, D., Chen, J., Wang, Y., & Jeris, C. (2001). A Robust and Scalable Clustering Algorithm for Mixed Type Attributes in Large Database Environment. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 263–268.
Cristiano, E., Veldhuis, M., Wright, D.B., Smith, J.A. & van de Giesen, N. (2019). The Influence of Rainfall and Catchment Critical Scales on Urban Hydrological Response Sensitivity. Water Resources Research, 55(4), 3375–3390.
Dang, T.A. (2020). Simulating Rainfall IDF Curve for Flood Warnings in the Ca Mau Coastal Area under the Impacts of Climate Change. International Journal of Climate Change Strategies and Management, 12, 705–715
Ferreira, C. (2006). Gene expression programming: mathematical modeling by an artificial intelligence (Vol. 21). Springer.
Hong, Y., Hsu, K.L., Sorooshian, S. & Gao, X. (2004). Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. Journal of Applied Meteorology, 43(12), 1834-1853
Hu, Q., Li, Z., Wang, L., Huang, Y., Wang, Y. & Li, L. (2019). Rainfall Spatial Estimations: a review from spatial interpolation to multi-source data merging. Water, 11(3), 579.
Hudson, N.W. (1981). Soil conservation. Batsford. London, England.
Jaleel, L.A. & Farawn, M.A. (2013). Developing rainfall intensity-duration-freqency relationship for Basrah city. Kufa Journal of Engineering, 5(1), 105-112.
Joyce, R., Janowiak, J., Arkin, Ph. & Xie, P. (2004). CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrology, 5(3), 487-503.
Kizza, M., Westerberg, I., Rodhe, A. & Ntale, H.K. (2012). Estimating areal rainfall over Lake Victoria and its basin using ground-based and satellite data. Journal of Hydrology, 464, 401-411.
Koza, J. (1992). Genetic Programming: on the Programming of Computers by Means of Natural Selection. MIT Press.
Kyaw, A.K., Shahid, S. & Wang, X. (2022). Remote Sensing for Development of Rainfall Intensity–Duration–Frequency Curves at Ungauged Locations of Yangon, Myanmar. Water, 14(11), 1699.
Liang, S., Li, X. & Wang, J. (2019). Advanced remote sensing: terrestrial information extraction and applications. Academic Press.
Mattar, M.A., (2018). Using gene expression programming in monthly reference evapotranspiration modeling: a case study in Egypt. Agricultural Water Management, 198, 28-38.
Mélèse, V., Blanchet, J., & Molinié, G. (2018). Uncertainty estimation of Intensity-Duration-Frequency relationships: a regional analysis. Journal of Hydrology, 558, 579-591.
Nakazato, R., Funakoshi, H., Ishikawa, T., Kameda, Y., Matsuda, I. & Itoh, S. (2018). January. Rainfall intensity estimation from sound for generating CG of rainfall scenes. In: Proceedings of 2018 International Workshop on Advanced Image Technology (IWAIT), 7-9 Jan., Institute of Electrical and Electronics Engineers Inc, Chiang Mai, Thailand, pp. 1-4.
Neal, W. D., & Wurst, J. (2001). Advances in Market Segmentation. Marketing research, 13(1).
Oppenheim, A.V., Willsky, A.S. & Hamid, S. (2006). Signals and Systems Second Edition. China, Publishing House of Electronics Industry.
Prateek, G. (2017). Target detection using weather radars and electromagnetic vector sensors. Signal Processing, 137, 387-397.
Rasel, M.M. & Islam, M.M. (2015). Generation of rainfall intensity-duration-frequency relationship for north-western region in Bangladesh. IOSR Journal of Environmental Science, Toxicology and Food Technology, 9 (9), 41-47.
Şchiopu, D. (2010). Applying TwoStep cluster analysis for identifying bank customers' profile. Buletinul, 62(3), 66-75.
Tramblay, Y., Thiemig, V., Dezetter, A. & Hanich, L. (2016). Evaluation of satellite-based rainfall products for hydrological modelling in Morocco. Hydrological Sciences Journal, 14(61), 2509-2519.
Uijlenhoet, R. (2001). Raindrop size distributions and radar reflectivity–rain rate relationships for radar hydrology. Hydrology and Earth System Sciences, 5(4), 615–628.
Weeks, M. (2010). Digital signal processing using MATLAB and wavelets. Publisher: Jones and Bartlett Learning.
Wichmeier, W.H., & Smith, D.D. (1978). Predicting rainfall losses: a guide to conservation planning. Agriculture Handbook No. 537, US Department of Agriculture, Washington, DC.