Alkurdi, S. S., Al-Juboori, R. A., Bundschuh, J., & Hamawand, I. (2019). Bone char as a green sorbent for removing health threatening fluoride from drinking water. Environment international, 127, 704-719.
Alkurdi, S. S., Al-Juboori, R. A., Bundschuh, J., Bowtell, L., & McKnight, S. (2020). Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal. Environmental Pollution, 262, 114221.
Anae, J., Ahmad, N., Kumar, V., Thakur, V. K., Gutierrez, T., Yang, X. J., ... & Coulon, F. (2020). Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives. Science of the Total Environment, 144351.
Boostani, H. R., Hardie, A. G., & Najafi-Ghiri, M. (2019). Chemical fractions and bioavailability of nickel in a Ni-treated calcareous soil amended with plant residue biochars. Archives of Agronomy and Soil Science.
Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal, 54(5), 464-465.
Brunori, C., Cremisini, C., D’annibale, L., Massanisso, P., & Pinto, V. (2005). A kinetic study of trace element leachability from abandoned-mine-polluted soil treated with SS-MSW compost and red mud. Comparison with results from sequential extraction. Analytical and Bioanalytical Chemistry, 381(7), 1347-1354.
Chojnacka, K. (2005). Equilibrium and kinetic modelling of chromium (III) sorption by animal bones. Chemosphere, 59(3), 315-320.
Corami, A., Mignardi, S., & Ferrini, V. (2008). Cadmium removal from single-and multi-metal (Cd+ Pb+ Zn+ Cu) solutions by sorption on hydroxyapatite. Journal of Colloid and Interface Science, 317(2), 402-408.
da Luz Mesquita, P., Cruz, M. A. P., Souza, C. R., Santos, N. T. G., Nucci, E. R., & Rocha, S. D. F. (2017). Removal of refractory organics from saline concentrate produced by electrodialysis in petroleum industry using bone char. Adsorption, 23(7), 983-997.
Figueiredo, M. J. D. F. M. D., Fernando, A., Martins, G., Freitas, J., Judas, F., & Figueiredo, H. (2010). Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceramics international, 36(8), 2383-2393.
Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: Human health and environmental toxicology. International journal of environmental research and public health, 17(3), 679.
Ghanizadeh, G., & Asgari, G. (2011). Adsorption kinetics and isotherm of methylene blue and its removal from aqueous solution using bone charcoal. Reaction Kinetics, Mechanisms and Catalysis, 102(1), 127-142.
Hannan, F., Huang, Q., Farooq, M. A., Ayyaz, A., Ma, J., Zhang, N., ... & Islam, F. (2021). Organic and inorganic amendments for the remediation of nickel contaminated soil and its improvement on Brassica napus growth and oxidative defense. Journal of Hazardous Materials, 416, 125921.
Hassan, S. S., Awwad, N. S., & Aboterika, A. H. (2008). Removal of mercury (II) from wastewater using camel bone charcoal. Journal of Hazardous Materials, 154(1-3), 992-997.
Hu, Y., Cheng, H., & Tao, S. (2016). The challenges and solutions for cadmium-contaminated rice in China: a critical review. Environment international, 92, 515-532.
Jia, P., Tan, H., Liu, K., & Gao, W. (2018). Synthesis, characterization and photocatalytic property of novel ZnO/bone char composite. Materials Research Bulletin, 102, 45-50.
Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428.
Liu, L., Li, W., Song, W., & Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633, 206-219.
Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum. Methods of soil analysis. Part, 3, 437-474.
Mendoza-Castillo, D. I., Bonilla-Petriciolet, A., & Jáuregui-Rincón, J. (2015). On the importance of surface chemistry and composition of bone char for the sorption of heavy metals from aqueous solution. Desalination and Water Treatment, 54(6), 1651-1662.
Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., & Chowdhary, P. (2019). Heavy metal contamination: an alarming threat to environment and human health. In Environmental biotechnology: For sustainable future (pp. 103-125). Springer, Singapore.
Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods, 5, 961-1010.
Pan, X., Wang, J., & Zhang, D. (2009). Sorption of cobalt to bone char: Kinetics, competitive sorption and mechanism. Desalination, 249(2), 609-614.
Rezaee, A., Rangkooy, H., Jonidi-Jafari, A., & Khavanin, A. (2013). Surface modification of bone char for removal of formaldehyde from air. Applied surface science, 286, 235-239.
Saffari, M., Karimian, N., Ronaghi, A., Yasrebi, J., & Ghasemi-Fasaei, R. (2015). Stabilization of nickel in a contaminated calcareous soil amended with low-cost amendments. Journal of soil science and plant nutrition, 15(4), 896-913.
Saffari, M., Vahidi, H., & Moosavirad, S. M. (2020). Effects of pristine and engineered biochars of pistachio-shell residues on cadmium behavior in a cadmium-spiked calcareous soil. Archives of Agronomy and Soil Science, 66(7), 942-956.
Shaheen, S. M., Shams, M. S., Khalifa, M. R., Mohamed, A., & Rinklebe, J. (2017). Various soil amendments and environmental wastes affect the (im) mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicology and environmental safety, 142, 375-387.
Shahid, M. K., Kim, J. Y., & Choi, Y. G. (2019). Synthesis of bone char from cattle bones and its application for fluoride removal from the contaminated water. Groundwater for Sustainable Development, 8, 324-331.
Shahid, M. K., Kim, J. Y., Shin, G., & Choi, Y. (2020). Effect of pyrolysis conditions on characteristics and fluoride adsorptive performance of bone char derived from bone residue. Journal of Water Process Engineering, 37, 101499.
Shahzad, B., Tanveer, M., Rehman, A., Cheema, S. A., Fahad, S., Rehman, S., & Sharma, A. (2018). Nickel; whether toxic or essential for plants and environment-A review. Plant physiology and biochemistry, 132, 641-651.
Singh, J. P., Karwasra, S. P. S., & Singh, M. (1988). Distribution and forms of copper, iron, manganese, and zinc in calcareous soils of India. Soil Science, 146(5), 359-366.
Sposito, G., Lund, L. J., & Chang, A. C. (1982). Trace metal chemistry in arid‐zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Science Society of America Journal, 46(2), 260-264.
Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. Methods of soil analysis: Part 3 Chemical methods, 5, 1201-1229.
Wang, M., Liu, Y., Yao, Y., Han, L., & Liu, X. (2020). Comparative evaluation of bone chars derived from bovine parts: Physicochemical properties and copper sorption behavior. Science of The Total Environment, 700, 134470.
Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, 2011.
Xu, H., Yang, L., Wang, P., Liu, Y., & Peng, M. (2008). Kinetic research on the sorption of aqueous lead by synthetic carbonate hydroxyapatite. Journal of Environmental Management, 86(1), 319-328.
Younesi, M., Javadpour, S., & Bahrololoom, M. E. (2011). Effect of heat treatment temperature on chemical compositions of extracted hydroxyapatite from bovine bone ash. Journal of materials engineering and performance, 20(8), 1484-1490.