حساسیت‌سنجی معادلات برآورد انتقال بار کل رسوب در رودخانه‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران.

2 گروه سازه های آبی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز

چکیده

به منظور محاسبه‌ی دبی انتقال رسوب در رودخانه‌ها عمدتاً از معادلات تجربی استفاده می‌شود. متغیرهای به کار رفته در این معادلات خصوصیات جریان و رسوبات، مانند سرعت و عمق جریان، اندازه‌ی ذرات رسوب است. برآورد انتقال رسوب با استفاده از این معادلات نیز بر پایه‌ی اندازه‌گیری این خصوصیات صورت می‌گیرد. خطاهایی که در اندازه‌گیری‌های این خصوصیات رخ می‌دهد و در کاربردهای مهندسی معمول است، بر صحت محاسبات انتقال رسوب تأثیر می‌گذارد. در تحقیق حاضر، انتشار خطای موجود در خصوصیات فیزیکی ورودی و تأثیر آن در برآورد انتقال بار رسوب به‌صورت کمی بررسی شده است و بر اساس آن میزان حساسیت و  نقاط ضعف و قوت چهار معادله‌ی انتقال بار کل رسوبات شامل: معادلات انگلند و هانسن، شِن و هانگ، مولیناس و وو، و یانگ و لیم تعیین شده است. از آنجایی که معادلات تجربی انتقال رسوب معادلاتی غیرخطی هستند از روش عددی مونت کارلو برای مقایسه معادلات استفاده شد. نتایج نشان می‌دهد که از بین عوامل فیزیکی ورودی، به ترتیب، سرعت جریان، اندازه‌ی ذرات رسوب، و سپس ضریب زبری بیشترین، و تغییرات عمق جریان کمترین تأثیر را بر محاسبات انتقال رسوب دارند. همچنین نتایج این تحقیق نشان می‌دهد که از بین چهار معادله‌ی مورد بررسی، معادله‌ی مولیناس و وو کمترین و معادله‌ی شن و هانگ بیشترین حساسیت را نسبت به خطای موجود در داده‌های خصوصیات فیزیکی ورودی دارند. در بیشتر حالات مورد بررسی، تفاوت مشاهده شده بین معادله‌ی شن و هانگ و معادله‌ی مولیناس و وو بسیار زیاد و در حدود چند صد درصد است. بنابراین توصیه می‌شود به‎جز در شرایطی که اندازه‌گیری‌های عوامل فیزیکی به‌طور دقیق انجام شده‌ است، معادله‌ی شن و هانگ به منظور محاسبه انتقال رسوب و یا استفاده در مدل‌های هیدرودینامیکی به‌کار برده نشود.

کلیدواژه‌ها


عنوان مقاله [English]

Sensitivity Analysis of Total Sediment Load Transport Equations in Rivers

نویسندگان [English]

  • Reza Azizi 1
  • Mahmood Shafai Bejestan 2
1 Department of Water Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
2 Department of Hydraulic Structures, Faculty of Water & Environmental Engineering, Shahid Chamran University of Ahvaz
چکیده [English]

In order to estimate the sediment transport discharge in rivers, empirical equations commonly are used. Variables of these equations are flow and sediment properties, such as flow depth and velocity, sediment grain size, or other properties. Estimation of sediment transport by using these equations is based on the measurement of the physical properties. In engineering applications, measuring errors of these properties affect the accuracy of sediment fluxes. The present study quantifies error propagation from the input properties and investigates its effect on the sediment transport calculations. This analysis determines the sensitivity, strengths and weaknesses of four total load equations, including: Engelund and Hansen, Shen and Hung, Molinas and Wu, and Yang and Lim. Due to non-linearity of most of the sediment transport equations, a Monte Calro numerical method is used to compare these equations. Results show that among the input physical properties, flow velocity, sediment grain size, and roughness coefficient mostly affect the sediment fluxes, respectively. Variation of flow depth has the least effect on sediment transport estimations. Results also show that among four investigated equations, Molinas-Wu and Shen-Hung equations are the least and most sensitive to the errors in the input physical data, respectively. In most cases the deference between the Shen-Hung and Molinas-Wu equations is very high and about several hundred percent. Hence, it is recommended not to use the Shen-Hung equation for sediment flux estimation or in hydrodynamic models, except if the physical properties are measured with precision. 

کلیدواژه‌ها [English]

  • sediment transport
  • total sediment load
  • error propagation
  • Sensitivity analysis
  • Monte Carlo method
Bechteler, W., Maurer, M. (1990) Reliability theory applied to sediment transport formulae. 8th International Conference on Computational Methods in Surface Hydrology. Computational mechanics publications, Southampton, England, pp. 298-309.
Camenen, B., Larroude, P. (2003) Comparison of sediment transport formulae for the coastal environment. Coastal Engineering, 48, pp. 111-132.
Chang, C.H., Yang, J.C., Tung, Y.K. (1993) Sensitivity and Uncertainty analysis of a sediment transport model: a global approach. In: Cushman, J.H. (Ed.), Stochastic Hydrology and Hydraulics, (vol. 7). Springer, Berlin, pp. 299-314.
Cikojević, A., Gilja, G., and Kuspilić, N. (2019) Sensitivity analysis of empirical equations applicable on bridge pirew in sand-bed rivers. 16th International Symposium on Water Management and Hydraulic Engineering (WMHE). 100-108.
Cimorelli, L., Covelli, C., De Vincenzo, A., and Pianese, D. (2021). Sedimentation in reservoirs: Evaluation of return periods related to operational failures of water supply reservoirs with Monte Carlo simulation. Journal of water resources planning and management, ASCE, 147(1).
Depeweg, H., and Mendez V, N. (2007) A new approach to sediment transport in the design and operation of irrigation channels. Taylor and Francis Group, London, UK.
Dey, S. (2014) Fluvial hydrodynamics, Hydrodynamic and sediment transport phenomena, Springer.
Fernández, R., and Garcia, M.H. (2017) Input-variable sensitivity assessment for sediment transport relations. Water resources research, 53, pp. 8105-8119.
Fortunato, A.B., Oliveira, A., Alves, E.T. (2002) Circulation and salinity intrusion in the Guadiana Estuary. Thalassas 18(2), pp. 43-65.
Guertault, L., and Fox, G. A. (2018) Impact of data availability and resolution on long-term sedimentation estimates in a storage reservoir. Journal of hydrologic engineering, ASCE, 23(10).
Gunawan, T.A., Daud, A., Haki, H., and Sarino (2019) The estimation of total sediment load in river tributary for sustainable resources management. IOP conference series: Earth and Environment science, 248.
Hosseini, S.M., and Jahangiri, M. (2011) Uncertainty and sensitivity analysis of empirical equations for flow through rockfill. Iranian journal of watershed management science and engineering. 5(14), pp. 61-70.
Hostache, R., Hissler, C., Matgen, P., Guignard, C., and Bates, P. (2014) Modeling suspended sediment propagation and related heavy metal contamination in floodplans: a parameter sensitivity analysis. Hydrology and earth system sciences, 18(9), pp. 3539-3551.
Monowar Hossain, M., and Lutfor Rahman, M. (1998) Sediment transport functions and their evaluation using data from large alluvial rivers of Bangladesh. Modelling Soil Erosion, Sediment Transport Closely Related Hydrological Processes (Proceedings of a symposium held in Vienna, July 1998). IAHR Publ. No. 249.
Nassar, M.A. (2011) Multi-parametric sensitivity analysis of CCHE2D for channel flow simulations in Nile river. Journal of Hydro-environmental research, 5(3), pp. 187-195.
Pinto, L., Fortunato, A., and Freire, P. (2006) Sensitivity analysis of non-cohesive sediment transport formulae. ScienceDirect, Continental shelf research, 26, pp. 1826-1839.
Shafie Bajestan, M. (2008) Basic theory and practice of hydraulics of sediment transport (2ed ed.). Shahid Chamran University press, Ahvaz. (in Farsi)
Soulsby, R.L. (1995) The “Bailard” sediment transport formula: comparison with data and models, Adv. In coastal morphodynamics: an overview of the G8-coastal morphodynamics project, Delft Hydraulics, Netherlands.
Van Rijn, L. C. (1984c) Sediment transport. Part III: bed forms and alluvial Roughness. Journal of Hydraulic Engineering, ASCE, 110(12), pp. 1733-1754.
Van Rijn, L. C. (1989) Handbook-sediment transport by currents and waves. Report H 461, Delft Hydraulics.
Van Rijn, L. C., Grasmeijer, B.T., Ruessink, B.G. (2000) Measurement errors of instruments for velocity, wave height, sand concentration and bed levels in field conditions. University of Utrecht, Delft Hydraulics Report.
Wu, W. (2008) Computational river dynamics, Taylor and Francis Group, London, UK.