مدل‌سازی مکانی تعرق گیاهان جهت پشتیبانی فرآیندهای تصمیم‌گیری در بخش کشاورزی مطالعه موردی: غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیئت علمی گروه آب و هواشناسی، دانشکده انسانی، دانشگاه زنجان، زنجان، ایران

2 دانشجو دکتری گروه آب و هواشناسی، دانشکده انسانی، دانشگاه زنجان، زنجان، ایران

چکیده

   تعرق گیاهی فرآیندی است که طی آن بخشی از آب موجود در گیاه به‌صورت بخار از روزنه‌های آن خارج می‌شود. آگاهی از مقدار­ تعرق گیاهی در توسعه راهبردها، جهت پایداری آب مفید است. اندازه‌گیری تعرق گیاهی به­صورت میدانی، نقطه‌ای و ناپیوسته بوده و با مشکلاتی همراه است. هدف از این تحقیق تهیه نقشه تعرق گیاهی با استفاده از تصاویر ماهواره‌ای و مدل‌سازی مکانی جهت شناسایی میزان تأثیرگذاری متغیرهای محیطی بر تعرق در غرب ایران است. ابتدا با الگوریتم نوشته‌شده در سامانه ابری گوگل ارث اینجین نقشه میانه تعرق گیاهی به‌عنوان متغیر وابسته استخراج شد و سپس لایه‌های تابش خورشیدی، کمبود فشار بخارآب، سرعت باد و دمای حداکثر، شاخص پوشش گیاهی به‌عنوان متغیرهای مستقل جهت مدل‌سازی انتخاب شدند. نتایج نشان داد میزان پراکندگی تعرق گیاهی در محدوده مطالعه بین 0 تا 6/2 میلی‌متر در روز است. جهت صحت سنجی نقشه خروجی از داده­های میدانی برداشت‌شده 16 مزرعه نمونه مرکز تحقیقات کشاورزی استان کرمانشاه و کردستان استفاده شد و با مقایسه پیکسل‌های نقشه و داده‌های زمینی، ریشه میانگین مربعات خطا و ضریب نش ساتکلیف به ترتیب 71/0 و 63/0 به دست آمد. پس از اجرای مدل‌های رگرسیون کلی و رگرسیون مکانی بر اساس شاخص‌های ارزیابی، رگرسیون مکانی قدرت تبیین و برآورد بهتری نسبت به رگرسیون کلی را نشان داد. بر اساس این مدل ضرایب هر متغیر به‌صورت مکانی برآورد شد و این امکان را به وجود آورد که تغییر مکانی روابط بین متغیرها مشخص شود. همچنین نتایج اجرای هر دو مدل نشان داد شاخص‌های پوشش گیاهی[1] و کمبود فشار بخارآب در غرب ایران بیش‌ترین اثر مثبت را در تعرق گیاهی دارند. با استفاده از نتایج این تحقیق می‌توان مناطق در معرض تعرق شدید گیاهی را جهت بهبود مدیریت سیستم‌های آبیاری و ارائه خدمات هوشمندانه کشاورزی شناسایی کرد.



[1] Normalized Difference Vegetation Index (NDVI)

کلیدواژه‌ها


عنوان مقاله [English]

Spatial Modeling of Plant Transpiration to Support Decision-making Processes in Agriculture Case Study: Western Iran

نویسندگان [English]

  • hosin mirmosavi 1
  • kohzad raispour 1
  • mohammad kamangar 2
1 Faculty of Climatology, Faculty of Humanities, Zanjan University, Zanjan, Iran
2 PhD Student of Climatology,Faculty of Humanities, Zanjan University, Zanjan, Iran
چکیده [English]

   Plant transpiration is a process through which part of the water in the plant is transfered out of the pores. The amount of plant transpiration data is useful in developing strategies for water sustainability. Field measurement of plant transpiration is pointwise and discontinious and has some difficulties. The purpose of this study is to provide a plant transpiration map using satellite images and spatial modeling to identify the impact of environmental variables on transpiration in western Iran. First, by using the algorithm written in Google Earth cloud system, the plant vegetation translocation map was extracted as a dependent variable, and then the layers of solar radiation, water vapor pressure, wind speed and maximum temperature, vegetation index were selected as independent variables for modeling. The results showed that the prevalence of plant transpiration in the studied area range from 0 to 2.6 mm per day. Field data collected from 16 typical farms of Agricultural Research Center of Kermanshah and Kurdistan Provinces were used for validation and by comparing the map pixels and the ground data, the root mean square error and the Nash Sutcliffe coefficient were obtained to be 0.71 and 0.63, respectively. After implementing general regression and spatial regression models based on evaluation criteria, the spatial regression showed better explanatory and estimation power than the general regression. Based on this model, the coefficients of each variable were estimated spatially, making it possible to determine the spatial variation of the relationships between the variables. Also, the results of both models showed that the vegetation indices and water vapor pressure deficiency in western of Iran have the most positive effect on vegetation transpiration. Using the results of this study, areas prone to severe plant transpiration can be identified for improving the management of irrigation systems and providing intelligent agricultural services.

کلیدواژه‌ها [English]

  • Plant transpiration
  • spatial regression
  • MODIS sensor
  • Penman Mantis index
  • West of Iran
Abrifam, M. (2001). The Synoptic Analysis of Entranced Air Masses to the West of Iran (2004-2005), Supervisor: Gholamreza Barati, Master of Science in Climatology, Razi University of Kermanshah.
Akbari, M. Seif, Z. and Zare, H. (2012). Estimation of actual evapotranspiration and potential in different climatic conditions using remote sensing. Water and Soil, 25(4), 835-844. (In Farsi)
Asakereh, H. and Sifipour, Z. (2015). Spatial modeling of annual rainfall in Iran. Geography and Development, 10(29), 15-30. (In Farsi)
Asakereh, H. and Razmi, R. (2018). Spatial modeling of summer rainfall in northwestern Iran. Applied Research Space of Geographical Sciences, 18(50), 156-178. (In Farsi)
Brown, S., Versace, V., Laurenson, L., Ierodiaconou, D., Fawcett, J., and Salzman, S. (2012). Assessment of spatiotemporal varying relationships between rainfall, land cover and surface water area using geographically weighted regression. Environmental Modeling and Assessment, 17(3), 241-254.
Erfanian, M., Hossinkhah, M., and Alijanpor, A (2014). Introduction to Multivariate OLS Regression Methods and GWR in spatial modeling of land use effects. Extension and Development of Watershed Management, 1(1), 33-39. (In Farsi)
Ganji, M. H. (2003). Climatic faults of Iran. Bulletin of the National Center for Climatology, 3 (1), 41. (In Farsi)
Hu, G., Li, J., and Menent, M. (2015). Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sensing of Environment, 156, 510-526.
Kalma, D., McVicar, R., and McCabe, F. (2008). Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surveys in Geophysics, 29, 421–469.
Kerlinger, p. (2005). Multiple regression in behavioral research. Translated by Hassan sarai. Samt Press. (In Farsi)
Lu, B., Harris, P., Charlton, M., and Brunsdon, C. (2015). Calibrating a geographically weighted regression model with parameter-specific distance metrics. Procedia Environmental Sciences26, 109-114.
L'vovich, M. and White, F. (1990) Use and transformation of terrestrial water systems The Earth as transformed by human action Cambridge. UK. Cambridge University Press.
Maidment, D. R. (1993) Handbook of hydrology. McGraw-Hill.
Marbote, B., Ashrafzadeh, A., Vazifehdoost, M., and Khaledian, M. (2018). Comparison of real evapotranspiration of MOD16 product and simulated by SWAP model (Case study: Farms under corn cultivation in Qazvin province. Iran Water Resources Research, 14 (2), 81-93. (In Farsi)
Mojarad, F., and Masoompour, J. (2013). Estimation of maximum probable precipitation by synoptic method in Kermanshah province. Geographical studies of arid regions, 13, 1-14. (In Farsi)
Mir Yaghoubzadeh, M., Soleimani, K., Habib Nejad, M., Kaka Shahedi, R., Abbaspour, K., and Akhavan, S. (2014). Determining and evaluating actual evapotranspiration using remote sensing data; Case study of Tamar watershed, Golestan. Irrigation and water of Iran, 4(3), 89-103. (In Farsi)
Mu, Q., Zhao, M., and Running, W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing Environment, 115 (8), 1781–1800.
Schlesinger, W. and Jasechko, S. (2014). Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189, 115–119
Sharma, C. and Mondale, A. (2006). Mapping of soil salinity and sodicity using digital image analysis and GIS in irrigated lands of the Indo-Gangetic plain. Agropedology, 16, 71–76. 
Usman, U., Aliyu, M., and Aminu, K. (2015). Study of the Geographically Weighted Regression Application on Climate Data. Mathematical Theory and Modeling, 5, 8.
Wang, Q., Ni, J. and Tenhunen, J. (2005). Application of geographically weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Global ecology and biogeography, 14(4), 379-393.
Zhang, Y., Peña-Arancibia, J., McVicar, T., Chiew, F., Vaze, J., Liu, C., Zheng, H., Wang, Y., Yi, Y., Miralles D., and Pan, M. (2016). Multi-decadal trends in global terrestrial evapotranspiration and its components. Scientific reports, 6, 19124-1939.