عمق نصب زهکش‌های زیرزمینی در مناطق خشک و نیمه‌خشک؛ چالش‎ها و راهکارها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان، خرم‌آباد، ایران

2 عضو هیئت علمی (دانشیار) مؤسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 استاد، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران

4 استاد، گروه آبیاری و زهکشی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

چالش اصلی در تعیین عمق زهکش‌ها در مناطق خشک و نیمه‌خشک، عدم کارآیی زهکش‌های کم‌عمق در کنترل شوری و در عین‌حال تخلیه زهاب بیشتر، شورتر و آلوده‌تر توسط زهکش‌های عمیق است. در فصل آبیاری، هدف زهکشی عمدتاً تهویه خاک است و عمق طراحی زهکش‌ها باید سطح آب زیرزمینی را در موقعیتی حفظ کند که از آسیب‌های ناشی از ماندابی جلوگیری شود. در دوره بدون آبیاری، حداقل عمق لازم برای زهکش‌ها باید به‌گونه‌ای باشد که از صعود شوری همراه با جریان مویینگی جلوگیری کند. شاید بهترین راهکار فائق آمدن بر تعارض کنترل شوری و آسیب کمتر به محیط‌زیست، زهکشی کنترل شده است. با این‌حال هزینه نصب تجهیزات و سازه‌های لازم برای این سامانه‌ها و همچنین مشکلات بهره‌برداری و نگهداری، سبب شده است تا اجرا و بهره‎برداری از آنها در کشورهای درحال توسعه گسترش زیادی پیدا نکند. شاید به‌نظر ساده‌ترین و کم‌هزینه‌ترین راهکار، شخم‌زدن خاک و یا هرگونه عملیات خاک‌ورزی است که موجب قطع لوله‌های مویین شود. ولی شخم زدن پس از برداشت محصول، محتوای مواد آلی خاک را در برابر نور آفتاب قرار می‌دهد که با سرعت اکسید می‌شوند و این امر بر حاصلخیزی اراضی اثر منفی خواهد گذاشت. یک راهکار قابل پیشنهاد دیگر سامانه زهکشی دوعمقی است. در چنین سامانه‌ای، وظیفه کنترل سطح ایستابی در فصل آبیاری بیشتر بر عهده زهکش‌های کم‌عمق است و در فصل بدون آبیاری سطح ایستابی به تراز زهکش‌های عمیق‌تر نزول می‌کند و پتانسیل شور شدن مجدد به وسیله خیز مویینگی کاهش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Installation Depth of Subsurface Drains in Arid and Semi-Arid Regions; Challenges and Solutions

نویسندگان [English]

  • Majid Sharifipour 1
  • Alireza Hassanoghli 2
  • Abdolmajid Liaghat 3
  • Abd Ali Naseri 4
1 Assistant Professor, Department of Water Engineering, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
2 Associated Professor, Agricultural Engineering Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
3 Professor, Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering & Technology, University of Tehran, Karaj, Iran
4 Professor, Irrigation and Drainage Department, Faculty of Water Sciences & Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

The main challenge in determining drainage depth in arid and semi-arid regions is the inefficiency of shallow drainage in salinity control and producing more drainage water by deep drains which is also more saline and more polluted. In the irrigation season, the focus of drainage is mainly on soil aeration, and the depth of the drainage design should keep the groundwater level in a position that avoids damages caused by waterlogging. During the non-irrigation period, the minimum depth required for drainage should be such as to prevent salinity increase through the capillary flow. Controlled drainage is the best way to overcome the conflict of salinity control and less damage to the environment. However, necessary equipment and structures for these systems are costly, as well as operational and maintenance problems, have led to a lack of expansion of such systems in developing countries. The simplest and cheapest solution to the problem is to plow the soil or any other tillage operation that will cut off the capillaries. But post-harvest plowing exposes soil organic matter to sunlight that is rapidly oxidized, which will have a negative impact on soil fertility. Another suggested solution is a bi-level drainage system. In such a system, the task of controlling the water level in the irrigation season is mostly the responsibility of shallow drains. In the non-irrigation season, the water level drops to deeper drain levels and the potential for re-salinization by capillary up-flow will be reduced.

کلیدواژه‌ها [English]

  • salinity
  • drainage water
  • capillary
  • controlled drainage
  • bi-level drainage
Abdel-Dayem, S., & Ritzema, H. P. (1990). Verification of drainage design criteria in the Nile Delta, Egypt. Irrigation and Drainage Systems4(2), 117-131.
Adeuya, R., Utt, N., Frankenberger, J., Bowling, L., Kladivko, E., Brouder, S., & Carter, B. (2012). Impacts of drainage water management on subsurface drain flow, nitrate concentration, and nitrate loads in Indiana. Journal of Soil and Water Conservation67(6), 474-484.
Akram, M., Azari, A., Nahvi, A., Bakhtiari, Z., & Safaee, H. D. (2013). Subsurface drainage in Khuzestan, Iran: environmentally revisited criteria. Irrigation and Drainage62(3), 306-314.
Akram, M., & Lotfi, A. (2015). Suitable depth of subsurface drainage in Khuzestan. First National Conference on Technical, Economic, Social and Environmental Dimensions of the 550,000-hectare Land Restoration Project in Khuzestan and Ilam. (In Persian)
American Society of Agricultural Engineers (ASAE). (2003). Design, Construction and Maintenance of Subsurface Drainage in Arid and Semi-arid Areas. Engineering Practice ASAE-EP 463.1. St Joseph, Mich. USA.
Asghar, M. N. (1996). Computer simulation of salinity control by means of an evaporative sink (Doctoral dissertation, University of Newcastle upon Tyne).
Ayars, J. E., Christen, E. W., & Hornbuckle, J. W. (2006). Controlled drainage for improved water management in arid regions irrigated agriculture. Agricultural water management, 86(1-2), 128-139.
Ayars, J. E., Hutmacher, R. B., Schoneman, R. A., Soppe, R. W. O., Vail, S. S., & Dale, F. (1999). Realizing the potential of integrated irrigation and drainage water management for meeting crop water requirements in semi-arid and arid areas. Irrigation and Drainage Systems13(4), 321-347.
Ayars, J. E., Shouse, P., & Lesch, S. M. (2009). In situ use of groundwater by alfalfa. Agricultural Water Management96(11), 1579-1586.
Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture (Vol. 29). Rome: Food and Agriculture Organization of the United Nations.
Bastiaanssen, W. G. M., Kabat, P., & Menenti, M. (1989). A new simulation model of bare soil evaporation in arid regions (EVADES) (No. 1938). ICW.
Boumans, J. H., & Vos, J. (1987). Drainage in arid regions. In Proc., Symp. 25th Int. Course on Land Drainage: Twenty-Five Years of Drainage Experience (Vol. 42, pp. 22-41). Publication.
Bouwer, H., & Van Schilfgaarde, J. (1963). Simplified method of predicting fall of water table in drained land. Transactions of the ASAE6(4), 288-0291.
Bureau of Standards and Technical Criteria of Iran Water Resources Management Company. (2005). Design parameters to determine the distance and depth of underground drainage. Paper No. 319. (In Farsi)
Cheraghi, S. A. M. (2001, March). Institutional and scientific profiles of organizations working on saline agriculture in Iran. In Prospects of saline agriculture in the Arabian Peninsula: Proceedings of the international seminar on prospects of saline agriculture in the GCC Countries (Vol. 18, p. 20).
Christen, E. W., Ayars, J. E., & Hornbuckle, J. W. (2001). Subsurface drainage design and management in irrigated areas of Australia. Irrigation Science21(1), 35-43.
Christen, W., & Skehan, D. (2001). Design and management of subsurface horizontal drainage to reduce salt loads. Journal of irrigation and drainage engineering127(3), 148-155.
David, M. B., Gentry, L. E., Kovacic, D. A., & Smith, K. M. (1997). Nitrogen balance in and export from an agricultural watershed. Journal of environmental quality26(4), 1038-1048.
Davoodi, K., darzi, A., Aghajani- Mazandarani, G. (2018). Effect of Free and Controlled Drainage on Water Balance and Soil and Drainage Water Salinity under Rainfed Canola in Paddy Fields. Journal of Water Research in Agriculture, 32.3(3), 367-382. (In Persian).
DeBoer, D. W., & Chu, S. T. (1975). Bi-level subsurface drainage theory. Transactions of the ASAE18(4), 664-0667.
Evans, R. O., Wayne Skaggs, R., & Wendell Gilliam, J. (1995). Controlled versus conventional drainage effects on water quality. Journal of Irrigation and Drainage Engineering121(4), 271-276.
FAO (Food and Agriculture Organization of the United Nations). 1989. Production Year Book. FAO: Rome; 350.
FAO, (2013). FAO Statistical Yearbook 2013, World Food and Agriculture. Food and Agriculture Organization of the United Nations, Rome, pp. 289, Available at: http://www.fao.org/docrep/018/i3107e/i3107e00.htm (accessed 21.07.13).
FAO. 1980. Drainage design factors. Irrigation and Drainage Paper No. 38, FAO, Rome.
Faures, J.-M., Svendsen, M., Turral, H., (2007). Water for food. In: David Molden (Ed.), Water for Life: A Comprehensive Assessment of Water Management in Agriculture. International Water Management Institute, Colombo, p. 354.
Fausey, N. R. (2004). Comparison of free drainage, controlled drainage, and subirrigation water management practices in an Ohio lakebed soil. In 2004 ASAE Annual Meeting (p. 1). American Society of Agricultural and Biological Engineers.
Frankenberger, J., Kladivko, E., Sands, G., Jaynes, D. B., Fausey, N., Helmers, M. J., & Brown, L. C. (2004). Drainage water management for the midwest. Iowa State University, Digital Repository
Ghaemi, A. A., & Willardson, L. S. (1992). Salt movement in a shallow drained soil with an artesian pressure. IN: Land Reclamation: Advances in Research & Technology. ASAE Publication 14-92. American Society of Agricultural Engineers, St. Joseph, Michigan. 1992. p 101-109. 6 fig, 3 tab, 9 ref.
Ghassemi, F., Jakeman, A. J., & Nix, H. A. (1995). Salinisation of land and water resources: human causes, extent, management and case studies. CAB international.
Gowing, J. W., & Asghar, M. N. (1996). Computer simulation of salinity management by means of an evaporative sink (dry drainage). In 6th Drainage Workshop, Ljubljana (Slovenia), 21-29 Apr 1996.
Gowing, J. W., Konukcu, F., & Rose, D. A. (2006). Evaporative flux from a shallow water table: the influence of a vapour–liquid phase transition. Journal of hydrology321(1-4), 77-89.
Guitjens, J. C., Ayars, J. E., Grismer, M. E., & Willardson, L. S. (1997). Drainage design for water quality management: Overview. Journal of Irrigation and Drainage Engineering123(3), 148-153.
Gunn, K. M., Fausey, N. R., Shang, Y., Shedekar, V. S., Ghane, E., Wahl, M. D., & Brown, L. C. (2015). Subsurface drainage volume reduction with drainage water management: Case studies in Ohio, USA. Agricultural water management149, 131-142.
Haj-Amor, Z., Hashemi, H., & Bouri, S. (2017, a). Soil salinization and critical shallow groundwater depth under saline irrigation condition in a Saharan irrigated land. Arabian Journal of Geosciences10(14), 301.
Haj-Amor, Z., Tóth, T., Ibrahimi, M. K., & Bouri, S. (2017, b). Effects of excessive irrigation of date palm on soil salinization, shallow groundwater properties, and water use in a Saharan oasis. Environmental Earth Sciences76(17), 590.
Hanjra, M. A., Ferede, T. and Gutta, D. G. (2009). Pathways to breaking the poverty trap in Ethiopia: Investments in agricultural water, education, and markets. Agricultural Water Management, 96(11), 1596-1604.
Hendrickx, J. M. H., Chaudhry, M. A., Kijne, J. W., Sadiq, M., & Raza, Z. I. (1990). Soil physical measurements for drainage design in arid regions. In Proceedings of Symposium on Land Drainage for Salinity Control in Arid and Semi-arid Regions, Cairo. (No. 2, pp. 124-134). Drainage Research Institute, WRC (Ministry of Public Works and Water Resources).
Hermsmeier, L. F. (1973). Shallow drain performance in a heavy soil. Transactions of the ASAE16(1), 92-0094.
Heuperman, A. F., Kapoor, A. S., & Denecke, H. W. (2002). Biodrainage: principles, experiences and applications (No. 6). Food & Agriculture Org.
Hornbuckle, J. W., & Christen, E. W. (1999). Physical properties of soils in the Murrumbidgee and Coleambally irrigation areas. CSIRO Land and Water.
Hornbuckle, J. W., Christen, E. W., & Faulkner, R. D. (2007). Evaluating a multi-level subsurface drainage system for improved drainage water quality. Agricultural water management89(3), 208-216.
Hornbuckle, J. W., Christen, E. W., & Faulkner, R. D. (2011). Analytical solution for drain flows from bi-level multiple-drain subsurface drainage systems. Journal of Irrigation and Drainage Engineering138(7), 642-650.
ICID (International Commission on Irrigation and Drainage). (1977). Iranian National Committee Report. ICID Special Session, Tehran, May 1977. ICID, New Delhi; 13
ICID (International Commission on Irrigation and Drainage). 2002. Irrigation and Food Production Information about ICID Network Countries. Available at http://www.icid.org/index_e.html
Javani, H., Liaghat, A., Hassan Oghli, A., Nazari, B. (2018). The Effect of Controlled Drainage on Drainage Discharge, water Table and Water Productivity in Maghan Plain. Iranian Journal of Soil and Water Research, 49(1), 207-219.
Jaynes, D. B., & Colvin, T. S. (2006). Corn yield and nitrate loss in subsurface drainage from midseason nitrogen fertilizer application. Agronomy Journal98(6), 1479-1487.
Jury, W. A. (1975a). Solute Travel-Time Estimates for Tile-Drained Fields: I. Theory 1. Soil Science Society of America Journal39(6), 1020-1024.
Jury, W. A. (1975b). Solute Travel-Time Estimates for Tile-Drained Fields: II. Application to experimental studies. Soil Science Society of America Journal39(6), 1025-1029.
Kacimov, A. R. (2000). Comment on the paper “An analytical solution for design of bi-level drainage systems” by AK Verma, SK Gupta, KK Singh, HS Chauhan. Agricultural Water Management46(2), 193-200.
Kahlown, M. A., & Khan, A. D. (2004). Tile drainage manual.
Karimov, A. K., Šimůnek, J., Hanjra, M. A., Avliyakulov, M., & Forkutsa, I. (2014). Effects of the shallow water table on water use of winter wheat and ecosystem health: Implications for unlocking the potential of groundwater in the Fergana Valley (Central Asia). Agricultural Water Management131, 57-69.
Konukcu, F., Istanbulluoglu, A., & Kocaman, I. (2004). Determination of water content in drying soils: incorporating transition from liquid phase to vapour phase. Soil Research42(1), 1-8.
Li, S., Luo, W., Jia, Z., Tang, S., & Chen, C. (2018). The Pros and Cons of Encouraging Shallow Groundwater Use through Controlled Drainage in a Salt-Impacted Irrigation Area. Water resources management32(7), 2475-2487.
Mahjoubi, A., Hooshmand, A., Naseri, A., & Jafari, S. (2013). Effects of Controlled Drainage on Soil Salinity, Irrigation Management and Sugarcane Yield at Imam Khomeini Plantation. Irrigation and Drainage Structures Engineering Research, 13(4), 25-40.
Mahjoubi, A., Hooshmand, A., Naseri, A., & Jafari, S. (2014). Effect of Controlled Drainage on Reducing Drainage Coefficient and Drainage Volume in Sugarcane Fields of Imam Khomeini Agro- industry. Journal of Water and Soil27(6), 1133-1144. (In Farsi).
Menenti, M. (1984). Physical aspects and determination of evaporation in deserts applying remote sensing techniques (Doctoral dissertation, Menenti).
Moorhead, D. L., & Callaghan, T. (1994). Effects of increasing ultraviolet B radiation on decomposition and soil organic matter dynamics: a synthesis and modelling study. Biology and Fertility of Soils18(1), 19-26.
Namken, L. N., Wiegand, C. L., & Brown, R. G. (1969). Water Use by Cotton from Low and Moderately Saline Static Water Tables 1. Agronomy Journal61(2), 305-310.
Nazari, B., Liaghat, A., Parsinezah, M., & Naseri, A. (2008). Optimization of the Installation Depth of Subsurface Drainage with Economic and Environmental Considerations. The fifth workshop on drainage and environment. (In Farsi).
Nijland, H. J. (2000). Drainage along the River Nile. Ministry of Public Works and Water Resources, Egypt, Ministry of Transport. Public Works and Water Management, Directorate-General of Public Works and Water Management, the Netherlands.
Northey, J. E., Christen, E. W., Ayars, J. E., & Jankowski, J. (2006). Occurrence and measurement of salinity stratification in shallow groundwater in the Murrumbidgee Irrigation Area, south-eastern Australia. Agricultural Water Management81(1-2), 23-40.
Nulsen, R. A. (1981). Critical depth to saline groundwater in non-irrigated situations. Soil Research19(1), 83-86.
Prathapar, S. A., & Qureshi, A. S. (1999). Modelling the effects of deficit irrigation on soil salinity, depth to water table and transpiration in semi-arid zones with monsoonal rains. International Journal of Water Resources Development15(1-2), 141-159.
Qadir, M., Qureshi, A. S., & Cheraghi, S. A. M. (2008). Extent and characterisation of salt‐affected soils in Iran and strategies for their amelioration and management. Land Degradation & Development19(2), 214-227.
Qureshi, A. S., Ahmad, W., & Ahmad, A. F. A. (2013). Optimum groundwater table depth and irrigation schedules for controlling soil salinity in central Iraq. Irrigation and Drainage62(4), 414-424.
Qureshi, A. S., Eshmuratov, D., & Bezborodov, G. (2011). Determining optimal groundwater table depth for maximizing cotton production in the Sardarya province of Uzbekistan. Irrigation and drainage60(2), 241-252.
Qureshi, A. S., Iqbal, M., Anwar, N. A., Aslam, M., & Chaudhry, R. M. (1997, May). Benefits of shallow drainage. In Proceedings Seminar on-farm salinity, drainage, and reclamation. IWASRI Publication (Vol. 179).
Rao, K. V. G. K., Sharma, S. K., & Kumbhare, P. S. (1995). Drainage requirements of alluvial soils of Haryana. Reclamation and Management of Waterlogged Saline Soils. Nat. Sem. Proc., Centr. Soil Sal. Res. Inst., Karnal and HAU, Hissar, India, 36-49.
Reicosky, D. C., Kemper, W. D., Langdale, G., Douglas, C. L., & Rasmussen, P. E. (1995). Soil organic matter changes resulting from tillage and biomass production. Journal of soil and water conservation50(3), 253-261.
Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of experimental botany57(5), 1017-1023.
Rhoades, J. D. (1974). Drainage for salinity control. Drainage for agriculture, (drainageforagri), 433-461.
Rhoades, J. D., & Halvorson, A. D. (1977). Electrical conductivity methods for detecting and delineating saline seeps and measuring salinity in northern Great Plains soils [Excessive salt accumulation]. ARS-W-US Agricultural Research Service, Western Region (USA).
Rhoades, J. D., Manteghi, N. A., Shouse, P. J., &Alves, W. J. (1989). Soil electrical conductivity and soil salinity: New formulations and calibrations. Soil Science Society of America Journal, 53(2), 433-439.
Rijtema, P. E. (1969). Soil moisture forecasting (No. 513). ICW.
Ritzema, H. P. (2006). Drainage principles and applications (No. 16). ILRI.
Ritzema, H. P. (2016). Drain for Gain: Managing salinity in irrigated lands—A review. Agricultural Water Management, 176, 18-28.
Ritzema, H. P., & Braun, H. M. H. (2006). Environmental impact of drainage. In: Ritzema, H.P. (Ed.), Drainage Principles and Applications, 16, 3rd edition. ILRI Publication, Alterra-ILRI, Wageningen, 1041–1064.
Ritzema, H. P., Satyanarayana, T. V., Raman, S., & Boonstra, J. (2008). Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: Lessons learned in farmers’ fields. Agricultural water management95(3), 179-189.
Ritzema, H., & Schultz, B. (2011). Optimizing Subsurface Drainage Practices in Irrigated Agriculture in the Semi‐Arid and Arid Regions: Experiences from Egypt, India and Pakistan. Irrigation and drainage60(3), 360-369.
Rose, D. A., Konukcu, F., & Gowing, J. W. (2005). Effect of watertable depth on evaporation and salt accumulation from saline groundwater. Soil Research43(5), 565-573.
Rosegrant, M. W. and Cline, S. A. (2003). Global food security: challenges and policies. Science, 302(5652), 1917-1919.‏
Rosegrant, M. W., & Cai, X. (2000). Modeling water availability and food security-a global perspective: The IMPACT-Water Model.
Saadat, S., Bowling, L., Frankenberger, J., & Kladivko, E. (2018). Nitrate and phosphorus transport through subsurface drains under free and controlled drainage. Water research142, 196-207.
Sadeghi Lari, A., Moazed, H., Naseri, A., Liaghat, A., Jaafari, S. (2013). Flow and Nitrate Losses Reduction using Controlled Drainage in the Arid and Semi-Arid Areas of Iran. Irrigation Sciences and Engineering, 36(3), 109-118. (In Farsi).
Sadeghi Lari, A., Moazed, H., Naseri, A., Mahjobi, A., & Liaghat, A. (2014). Water Table Fluctuation, Drainage Rate and Nitrogen Dynamic in the Farms of Sugarcane Cropping with Controlled Drainage System. Journal of Water and Soil27(6), 1077-1089. (In Persian).
Salama, R. B., Otto, C. J., & Fitzpatrick, R. W. (1999). Contributions of groundwater conditions to soil and water salinization. Hydrogeology Journal7(1), 46-64.
Saleh, H. H., & Troeh, F. R. (1982). Salt Distribution and Water Consumption from a Water Table with and without a Crop 1. Agronomy Journal74(2), 321-324.
Sarwar, A., & Feddes, R. A. (2000). Evaluating drainage design parameters for the Fourth Drainage Project, Pakistan by using SWAP model: Part II–modeling results. Irrigation and Drainage Systems14(4), 281-299.
Shah, S. H. H., Vervoort, R. W., Suweis, S., Guswa, A. J., Rinaldo, A. S. E. A. T. M., & Van der Zee, S. E. A. T. M. (2011). Stochastic modeling of salt accumulation in the root zone due to capillary flux from brackish groundwater. Water Resources Research47(9).
Sharifipour, M., Alizadeh, H., Naseri, A., Liaghat, A., Hasanoghli, A. (2015). Agricultural, Environmental and Economic Considerations in Determining Pipe Drain Depth in Arid and Semi-Arid Regions- Case Study Azadegan Plain. Water Management in Agriculture, 2(1), 71-80. (In Farsi)
Sharifipour, M., Liaghat, A., Naseri, A., Nozari, H., Hajishah, M., Zarshenas, M., Hoveizeh, H., & Nasri, M. (2019). Drainage Water Management of Irrigation and Drainage Networks of South West Khuzestan. Iranian Journal of Soil and Water Research, (), -. doi: 10.22059/ijswr.2019.274004.668107
Sharifipour, M., Naseri, A. A., Jafari, S., &Yazdanparast, S. (2013). Effect of Shallow and Saline Groundwater on Drain Water Salt Loud in South Khuzestan. 9th International Conference of River Engineering, Ahwaz, Iran.
Singh, A. (2014, a). Conjunctive use of water resources for sustainable irrigated agriculture. Journal of Hydrology519, 1688-1697.
Singh, A. (2014, b). Irrigation planning and management through optimization modelling. Water resources management28(1), 1-14.
Singh, A. (2015, a). Land and water management planning for increasing farm income in irrigated dry areas. Land Use Policy42, 244-250.
Singh, A. (2015, b). Poor quality water utilization for agricultural production: An environmental perspective. Land use policy43, 259-262.
Singh, A. (2015, c). Soil salinization and waterlogging: A threat to environment and agricultural sustainability. Ecological indicators57, 128-130.
Singh, R., Helmers, M. J., Crumpton, W. G., & Lemke, D. W. (2007). Predicting effects of drainage water management in Iowa's subsurface drained landscapes. Agricultural water management92(3), 162-170.
Skaggs, R. W., & Chescheir III, G. M. (2003). Effects of subsurface drain depth on nitrogen losses from drained lands. Transactions of the ASAE46(2), 237.
Smedema, L. K. (2007). Revisiting currently applied pipe drain depths for waterlogging and salinity control of irrigated land in the (semi) arid zone. Irrigation and Drainage: The journal of the International Commission on Irrigation and Drainage56(4), 379-387.
Smedema, L. K., Vlotman, W. F., & Rycroft, D. (2004). Modern land drainage: Planning, design and management of agricultural drainage systems. CRC Press.
Snellen, W.B. (1997). Towards integration of irrigation and drainage management: information on symposium background, objectives and procedures. In W.B. Snellen, ed. “Towards integration of irrigation and drainage management” proceedings of the jubilee symposium.Wageningen, The Netherlands, ILRI.
Srinivasulu, A., Rao, C. S., Lakshmi, G. V., Satyanarayana, T. V., & Boonstra, J. (2004). Model studies on salt and water balances at Konanki pilot area, Andhra Pradesh, India. Irrigation and Drainage Systems18(1), 1-17.
Talsma, T. (1963). The Control of Saline Groundwater. Department of Physics and Meteorology, Agricultural University, Wageningen, Netherlands.
Tanji, K. K. (1990). Agricultural Salinity Assessment and Management (ASCE Manual and Reports on Engineering Practice).: KK Tanji. Amer. Soc. of Civil Engineers, NYP619.
Tanji, K. K., & Kielen, N. C. (2002). Agricultural drainage water management in arid and semi-arid areas. FAO.
United Nations (2012). World Population Prospects: 2012 Revision Population Database, Available at: http://www.un.org/esa/population/unpop.htm (accessed on 19.07.13).
Valipour, M. (2014). Drainage, waterlogging, and salinity. Archives of Agronomy and Soil Science60(12), 1625-1640.
Van Achthoven, T., Lohan, H. S., & Parlin, B. W. (2000). The reclamation of waterlogged and saline lands with sub surface drainage: an overview of the Haryana Operational Pilot Project. In Role of drainage and challenges in 21st century. Vol. I. Proceedings of the Eighth ICID International Drainage Workshop, New Delhi, India, 31 January-4 February 2000.(pp. 515-528).
Van der Molen, W. H., Beltrán, J. M., & Ochs, W. J. (2007). Guidelines and computer programs for the planning and design of land drainage systems (Vol. 62). Food & Agriculture Org.
Van Hoorn, J. W. (1979). Effect of capillary flow on salinization and the concept of critical depth for determining drain depth. In Proceedings of the International Drainage Workshop, 16-20 May 1978, Wageningen, The Netherlands/edited by Jans Wesseling. Wageningen, International Institute for Land Reclamation and Improvement, 1979.
Van Hoorn, J. W., & Van Alphen, J. G. (2006). Salinity control. In Ritzema, H. P. (2006). Drainage principles and applications (No. 16). ILRI. , 533-600.
Varadachari, C., Mitra, S., & Ghosh, K. (2017, March). Photochemical oxidation of soil organic matter by sunlight. In Proc Indian Natn Sci Acad (Vol. 83, No. 1, pp. 223-229).
Verma, A. K., Gupta, S. K., Singh, K. K., & Chauhan, H. S. (1998). An analytical solution for design of bi-level drainage systems. Agricultural water management37(1), 75-92.
Wallender, W. W., & Tanji, K. K. (2011). Agricultural salinity assessment and management (No. Ed. 2). American Society of Civil Engineers (ASCE).
Weiss, E. B. (1992). United Nations Conference on Environment and Development. International Legal Materials, 31(4), 814-817.
Williams, M. R., King, K. W., & Fausey, N. R. (2015). Drainage water management effects on tile discharge and water quality. Agricultural water management148, 43-51.
Xu, X., Huang, G., Sun, C., Pereira, L. S., Ramos, T. B., Huang, Q., & Hao, Y. (2013). Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin. Agricultural water management125, 46-60.
Yang, F., An, F., Ma, H., Wang, Z., Zhou, X., & Liu, Z. (2016). Variations on soil salinity and sodicity and its driving factors analysis under micro topography in different hydrological conditions. Water8(6), 227.
Yang, F., Zhang, G., Yin, X., Liu, Z., & Huang, Z. (2011). Study on capillary rise from shallow groundwater and critical water table depth of a saline-sodic soil in western Songnen plain of China. Environmental Earth Sciences64(8), 2119-2126.