بررسی آب مجازی درون‌حوزه‌ای در حوضه آبریز سفیدرود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی اصفهان/ دانشکده کشاورزی/ گروه مهندسی آب

2 دانشگاه گیلان/ دانشکده علوم کشاورزی/ گروه مهندسی آب

چکیده

تجارت آب مجازی، در بخش‌های صنعتی، کشاورزی و اجتماعی و در سطوح مختلف کشوری و جهانی قابل‌بررسی است. در پژوهش حاضر، آب مجازی در بخش آبیاری و در مقیاس درون‌حوزه‌ای، در حوضه آبریز سفیدرود ارزیابی شد تا نتایج آن در تخصیص منابع آب حوضه مورداستفاده قرار گیرد. بر این اساس هشت الگوی کشت (S1- S8) در حاشیه رودخانه قزل‌اوزن (استان‌های زنجان و آذربایجان شرقی) طی سال‌های 1404-1380 توسط مدل SWAT ارزیابی شد. در این راستا، اطلاعات هواشناسی، هیدرولوژیکی رودخانه و عملکرد محصول زراعی برای سال‌های 1404- 1394، از طریق مدل سری زمانی ARIMA تولید گردید. مقایسه مقادیر متوسط آب مجازی گندم (24/3-73/2) و برنج (06/4-28/3 مترمکعب بر کیلوگرم) در استان‌های زنجان و آذربایجان شرقی، نشان داد که کشت گندم گزینه مناسب‌تری در منطقه می‌باشد. نتایج نشان داد الگوی کشت 50 درصد گندم آبی- 50 درصد گندم دیم (S6)، گزینه مناسبی برای جایگزین شدن کشت برنج در حاشیه رودخانه قزل‌اوزن در استان‌های زنجان و آذربایجان شرقی می‌باشد. همچنین تبادل آب مازاد گزینه S6 به استان پایین‌دستی حاشیه رودخانه قزل‌اوزن (گیلان) منجر به کاهش آب مجازی کشت برنج در این استان می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating interbasin virtual water in Sefidroud basin

نویسندگان [English]

  • Mahbobeh Aghajani 1
  • Behrooz Mostafazadeh Fard 1
  • Maryam Navabian 2
1
2
چکیده [English]

Virtual water trade is investigated in industrial, agricultural, social sectors for national and global scales. In this study, interbrain virtual water was evaluated in irrigation sector for the Sefidroud basin to use in the allocation of water resources. In this regard, through investigating eight cropping pattern (S1- S8) in the riverbank of Qezelozan River (provinces of East Azarbaijan, Zanjan) during the years 2001-2025 were evaluated SWAT model. Data of Meteorological, hydrological river and crop yield for the years 2014- 2025, were produced using Minitab 17.0 software through ARIMA time series model. The results showed that cultivating dry- irrigated wheat (S6) is more appropriate in the East Azarbayjan and Zanjan province because of average of virtual water of wheat and rice is 2.73- 3.24 and 3.28- 4.06 (m3/kg) ,respectively. Also, excess water exchange for S6 from East Azarbayjan and Zanjan provinces to Gilan province resulted in to reduce virtual water of rice Guilan province.

کلیدواژه‌ها [English]

  • Gilan province
  • rice
  • Sefidroud basin
  • SWAT Model
  • Wheat
Abbasi, F., Naseri, A., Sohrab, F., Baghani, J., Abbasi, N. and Akbari, M. (2015). Improve water use efficiency. Agricultural engineering research institute. (In Farsi)
Allan, J. A. (1997). Virtual water: A long-term solution for water short Middle Eastern economies. Paper presented at the 1997 British Assoc. Festival of Sci., University of Leeds, UK.
Agricultural Jihad statistics. (2013). Agricultural products and Cost of production, from http://amar.maj.ir. (In Farsi)
Agricultural Jihad studies. (2012). Detailed studies of the Sefidrud basin, from http://www.zwd.ir. (In Farsi)
Akhavan, S., Abedi-Koupai, J., Mousavi, S. F., Afyuni, M., Eslamian, S. S. and Abbaspour, K. (2010). Application of SWAT model to investigate nitrate leaching Hamadan–Bahar Watershed, Iran. Agriculture, Ecosystems and Eviroment, 139 (4), 675-688.
Antonelli, M. and Sartori, y. (2015). Unfolding the potential of the virtual water concept. What is still under debate? Environmental science & policy, 50 (2), 240 – 251. (In Farsi)
Daneshvar, M., Dehghanian, S., Hatef, H. and Sarvari, A. A. (2006). The analysis of wheat comparative advantage in Mashhad plain. Agricultural sciences and thechnology, 21 (1), 45-52.
Faramarzi, M., Abbaspour, K. C., Schulin, R. and Yang, H. (2009). Modelling blue and green water resources availability in Iran. Hydrol. Process, 23 (3), 486–501.
Faramarzi, M., Yang, H., Mousavi, J., Schulin, R., Binder, C. and Abbaspour, K. (2010). Hydrology and Earth System Sciences Discussions, 7 (3), 2609-2649.
Fracasso, A., Sartori, M. and Schiavo, S. (2015). Determinants of virtual water flows in the Mediterranean. Science of the Total Environment, xxx (x) xxx–xxx. (Accepted Manuscript)
Gassman, P. W., Reyes, M. R., Green, C. H. and Arnold, J. G. (2007). The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Direction. American Society of Agricultural and Biological Engineers, 50(4), 1211-1250.
Hanasaki, N., Inuzuka, T., Kanae, Sh. and Oki, T. (2010). An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. Journal of Hydrology. 384 (3), 232–244.
Khalilian, S., Chizari, A. and Afsari Badi, R. (2012). Determining the Optimum-Cropping Pattern of Crops with Emphasis on Maximization of Social Profit and Virtual Water Trade (Case Study: Varamin Plain). Agricultural Economic and Development, 79 (3), 1-23. (In Farsi)
Lu, Z., Zou, S., Xiao, H., Zheng, C., Yin, Z. and Wang, W. (2015). Comprehensive hydrologic calibration of SWAT and water balance analysis in mountainous watersheds in northwest China. Physics and Chemistry of the Eart, 79 (1), 76–85.
Mekonnen, M. M. and Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Science, 15 (5), 1577–1600.
Nossent, J., Elsen, P. and Bauwens, W. (2011). Sobol’ sensitivity analysis of a complex environmental model Environmental Modelling & Software, 26 (3), 1515-1525.
Salami, H. and Mohtashami, T. (2015). The projection model of Iran’s crop production in 2025.  Iranian Journal of Agricultural Economics and Development Research, 45 (4), 585-599.
Shi, C. and Zhan, J. (2015). An Input-Output table based analysis on the virtual water by sectors with the five northwest provinces in China, Physics and Chemistry of the Earth, xxx (x) xxx–xxx. (Accepted Manuscript)
Shinde, S.E., Ingle, P.M., Mane, M.S., Thoka R.T. and Ayare, B.L. (2015). Optimal cropping pattern for sustainable water use in canal command AREA. Research Journal of Recent Sciences, 3(4), 25-28.
Sun, Sh., Wang, Y., Engel, and Wu, P. (2016). Effects of virtual water flow on regional water resources stress: A case study of grain in China. Science of the Total Environment, 550 (3), 871-879.
Tian, G. (2013). Effect of Consumption of Livestock Products on Water Consumption in China Based on Virtual Water Theory. International Conference on Future Information Engineering, 5 (3), 112 – 117.
Valipour, M., Banihabib, M. E., Seyyed. and Behbahani, M. R. (2013). Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. Journal of Hydrology, 476 (7), 433-441. 
Van Genuchtan, M. Th. and Hoffman, G. J. (1984). Analysis of crop salt tolerance data. Soil Salinity under Irrigation- process and management. Ecological Studies 51, Springer-Verlag, New York, United State, pp. 258-271.
Water Comprehensive plan. (2011). Environmental report in the Sefidrood Basin. (In Farsi)
Yen, H., White, M., Jeong, J., Arabi, M. and Arnold, G. (2015). Evaluation of lternative surface runoff accounting procedures using the SWAT model International Journal of Agricultural and Biological Engineering, 8 (1), 1-17.
Zare, A., koocheki, A. and Nassiri, M. (2006). Trend analysis of yield, production and cultivated area of cereal in Iran during the last 50 years and prediction of future situation.Iranian Journal of Field Crops Research, 4 (1), 49-69. (In Farsi)