مقایسه عملکرد دو مدل‌‌ شبیه‌سازی فیزیکی و رگرسیونی برای برآورد دمای خاک زیر پوشش چمن در اقلیم کرج

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی آبیاری و آبادانی دانشگاه تهران، کرج

2 دانشیار گروه فیزیک فضای مؤسسة ژئوفیزیک دانشگاه تهران

3 کارشناس ارشد هواشناسی کشاورزی دانشگاه تهران

چکیده

آورد و پیش‌یابی دمای خاک با توجه به کمبود اندازه‌گیری‌های مستقیم در مزرعه و تأثیر آن در مدیریت و برنامه‌ریزی آبیاری حائز اهمیت است. در این پژوهش، کارایی مدل شبیه‌سازی COUP در مقایسه با مدل رگرسیونی چندمتغیره جهت برآورد دمای خاک در شرایط مزرعه‌ای زیر پوشش چمن ارزیابی شد. برای اجرای مدل COUP، متغیر‌های مورد نیاز در مقیاس زمانی روزانه جمع‌آوری و دمای خاک در اعماق 10، 30، 50، و 70 سانتی‌متری اندازه‌گیری شد. نتایج اجرای شبیه‌سازی و خروجی مدل رگرسیونی به روش گام‌به‌گام مقایسه و تحلیل شد. ضریب تعیین رابطة رگرسیونی حاکی از دقت پیش‌یابی‌هاست. بیشترین ضریب تعیین (R2) مربوط به عمق 70 سانتی‌متری خاک بود. همچنین بالاترین همبستگی بین دمای خاک و دمای کمینه بود که می‌تواند ناشی از اثر تلفات تابشی شبانة خاک باشد. ضرایب همبستگی متغیرهای هواشناسی با دمای خاک در همة عمق‌ها معنادار بودند. با لحاظ‌شدن متغیرهای مؤثر بر تابش دریافتی (ارتفاع گیاه و نمایة سطح برگ) و تغییرات رطوبتی خاک، پیش‌بینی دمای اعماق خاک از دقت بیشتری برخوردار شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of Performance of Two Simulation and Regression Models for an Estimation of Soil Temperature under Grass Cover in Karaj Climatic Conditions

نویسندگان [English]

  • NOZAR GHAHREMAN 1
  • PARVIZ IRANNEJAD 2
  • REZA NOROOZ VALASHEDI 3
1 Associate Professor, University of Tehran
2 Associate Professor, Institute of Geophysics, University of Tehran
3 Former M.Sc. Student, Agrometeorology, University of Tehran
چکیده [English]

Because of the scarcity of in situ measurements, estimation of soil temperature by other means is very indispensable, as for Irrigation management and scheduling when in different field conditions. So far, many regression models have been developed for an estimation of soil temperature, using meteorological data under bare soil. Throughout this study, the performance of COUP simulation model and multiple regression approach for an estimation of soil temperature within an experimental plot, and under grass (Lolium perenne) canopy (in Karaj climatic conditions has been evaluated. Soil physical parameters, estimated as based on soil analysis (soil texture, bulk density), and daily meteorological data (including maximum and minimum temperature, wind speed, pan evaporation, sunshine hours and rainfall) as well as vegetation data (crop height, root depth and Leaf Area Index (LAI) were made use of to run the model over the growing period. Soil temperature was measured using standard soil thermometers at depths of 10, 30, 50 and 70 centimeters. Stepwise approach was employed to develop suitable regression models. Following a running of both simulation and statistical models, the observed and simulated data values were compared, making use of statistical indices. The results revealed that, by inclusion of variables affecting incoming radiation i.e. crop height, and leaf area index, the accuracy in the prediction of soil moisture increases.

کلیدواژه‌ها [English]

  • COUP Model
  • multiple regression
  • Soil temperature
  • vegetation cover
Adib abbasi, M. (2006). Relations Soil Depth Temperature With Air Temperature (Screen) And Estimating Of Soil Frost Depth In Kurdistan Province. M.sc. Thesis. Firdausi University.
Aldridge, R. and Cook, F. J. (1983). Estimation of soil temperatures at 0.1m and 0.3m depths. New Zealand Soil Bureau Scientific Report. 62: 18p.
Bachmann, J., Horton, R., Ren, T., and Van Der Ploeg, R. (2001). Comparison of the thermal properties of four wet table and four water- repellent soils, Soil Sci. Soc. Am. J., 65: 1675- 1679.
Beltrami, H. and Kellman, L. (2003). An examination of short and long-term air ground temperature COUPling. Global and Planetary Change. 38: 291-303.
Chacko, P. T. and Renuka, G. (2002). Temperature mapping, thermal diffusivity and subsoil heat flux at Kariavattom of Kerala. Proc Indian AcadSci 111: 79–85.
Chen, R. S., Kang, E, S., and Lu, S. H. (2006). A distributed water-heat coupled (DWHC) model for mountainous watershed of an inland river basin (II): model results using the measured data at the meteorological &hydrological stations. Advances in Earth Science, 21, (8):819-829.
Eckersten, H., Jansson, P. E., and Johnsson, H. (1998). SOILN Model, Version 9.2, User’s Manual. Division of Hydromechanics, Communication 98:6. Swedish Agricultural University, Uppsala.
Fischer, R. D. (1983). Models of simultaneous heat and moisture transfer in soils, Battele, Columbus Laboratories, and ORNL/Sub/88- 7800/1806.
Fox, D. G. (1981). Judging air quality model performance: a summary of the AMS workshop on dispersion models performance. Bull. Am. Meteorol. Soc. 62: 599-609. 
Gustafsson, D., Lewan, E., and Jansson, P. E. (2004). Modeling Water and Heat Balance of the Boreal Landscape—Comparison of Forest and Arable Land in Scandinavia. J. Appl. Meteor., 43: 1750–1767.
Hasfurther, V. R. and Burman, R. D. (1974). Soil temperature modeling using air temperature as a driving mechanism. Trans- actions of ASAE Paper No: 78–81.
Hiraiwa, Y. and Kasubuchi, T. (2000). Temperature dependence of thermal conductivity of soil over a wide range of temperature (5–75°C).European Journal of Soil Science. 51: 211-218.
Horton, R., Wierenga, P. J., and Nielsen, D. R. (1983). Evaluation of methods for determining the apparent thermal diffusivity of soil near the surface. Soil Sci. Am. J., 47: 25-32.
Hosseinzadeh Talaee, P. (2014). Daily soil temperature modeling using neuro-fuzzy approach. Theor Appl Climatol.DOI 10.1007/s00704-013-1084-9.
Irannejad, P. and Shao, Y. (2002). Land-surface Processes, in: Peng, G. and Shao, Y. (eds), Environment Modeling and Prediction. Springer-Verlag Germany, 173-213.
Jafari Golestan, M., Raeini Sarjaz, M., and Ziatabar Ahmadi, M. Kh. (2007). Estimation of soil depth temperatures using curve analysis and regression models for City of Sari (Iran). Journal of Agricultural Sciences And Natural Resources . 14(5):112-123.
Jansson, P. E. (1998). Simulating Model for Soil Water and Heat Conditions, Division of Hydromechanics, Communication 98:2.Swedish University of Agricultural Science, Uppsala, Sweden.
Jansson, P. E. (2005). Simulation of Soil Temperature and Moisture Dynamics for Different Rainfall Conditions in Northeast China. Proceedings of the 3rd International Symposium on Intelligent Information Technology in Agriculture (ISIITA), Part Three Agriculture System Simulation, 293-296.
Jansson, P. E. and Moon, D. S. (2001). A COUPled model of water, heat and mass transfer using object orientation to improve flexibility and functionality. Environmental Modeling and Software, 16:37-46.
Khalili, A., Rahimi, H., and Aghashariatmadar, Z. (2012). Validation of SHAW model in determination of maximum soil frost penetration depth in typical arid and semi-arid zones of Iran.J. Agr. Sci. Tech. 14: 1185-1192.
Lipiec, J., Usowicz, B., and Ferrero, A., (2007). Impact of soil compaction and wetness on thermal properties of sloping vineyard soil. Int. J. Heat Mass Tran. 3837-3847.
Luo, V., Loomis, R. S., and Hsiao, T. C. (1992). Simulation of soil temperature in crops. Agric. For Meteorol. 61: 23-38.
MacLean Jr, S. F. and Ayres, M. P. (1985). Estimation of soil temperature from climatic variables at Barrow, Alaska, USA. Arctic & Alpine Research. 17: 425-432.
Muller, G. and Doring, J. (1989). Beregnungsverfahren for die temperature in unbewachsenem boden. Arch. Acker- Pflanzenbau Bodenkd, Berlin 33: 385–391.
Norooz Valashedi, R., Ghahreman, N., and Irannejad, P. (2012). Evaluation of the COUP model simulations of the soil moisture and temperature under maize canopy and bare soil. Iranian Journal of Soil Research (Formerly Soil And Water Sciences). 26(1): 55-66.
Philip, J. R. and de Vries, D. A. (1957). "Moisture Movement in Porous Materials under Temperature Gradients", Trans. American Geophysical Union, 38, 222-232.
Plauborg, F. (2002). Simple model for 10 cm soil temperature in different soils with short grass. European Journal of Agronomy 17: 173–179.
Pollack, H. N., Smerdon, J. E. and van Keken, P. E. (2005). Variable seasonal COUPling between air and ground temperatures: A simple representation in terms of subsurface thermal diffusivity. Geophysical Research Letters. 32: 15-40.
Razi, M. A. and Athappilly, K. (2005). A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models. Expert Systems with Applications. 29: 65-74.
Roodenburg, J. (1985). Estimating 10-cm soil temperatures under grass. Agricultural and Forest Meteorology 34: 41–52.
Sabziparvar, A. A., Zare Abyaneh, H., and Bayat Varkeshi, M. (2010). A model Comparison Between Predicted Soil Temperatures Using ANFIS Model and Regression Methods in Three Different Climates. Journal of Water and Soil. 24(2): 274-285.
Sanaeinejad, H., Adib abbasi, M., Musavi baygi, M., and Heydari, M. T. (2008). Relation Of Soil Depth And Air Temperature And Periodic Function In Kurdistan Province Weather Station. journal of Agriculture science. (water and Soil). 22:25-33.
Shaw, R. H. and Pereira, A. R. (1982). Aerodynamic roughness of a plant canopy: a numerical experiment. Agricultural Forest Meteorology, 26: 51-65.
Watson, C. L. (1980). Seasonal soil temperature regimes in south-eastern Australia. Australian Journal of Soil Research. 18: 325–331.
Wierenga, P. J., Nielsen D. R., and Hagan, R. M. (1969). Thermal properties of a soil based upon field and laboratory measurements. Soil. Sci. Soc. Am. Proc., 33: 354-360.
Willmot, C. J. (1982). Some Comments on the evaluation of model performance. Bul. Amer. Meteorl. Soc., 63: 1309-1313.
Wright, L. and Crew, J. T. (2000). Temperature and soil moisture regimes in and adjacent to the Fernow experimental forest. USDA. Research Paper.713: 1- 4.