شبیه‌سازی ذخایر کربن و نیتروژن آلی خاک در مدیریت‌های مختلف منطقه سارال غرب ایران با استفاده از مدل CENTURY

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 گروه مرتع‌داری، دانشکده منابع طبیعی، دانشگاه کردستان، سنندج، ایران

3 گروه مهندسی علوم خاک دانشکده کشاورزی، دانشگاه کردستان، سنندج ایران

چکیده

امروزه تغییر کاربری مراتع و چمنزارها و تبدیل آن‌ها به زمین‌های زراعی موجب تضعیف خصوصیات خاک و هدررفت کربن و نیتروژن خاک می‌شود. هدف این پژوهش واسنجی و اعتبارسنجی مدل سنچری به‌منظور تجزیه‌وتحلیل منابع کربن و نیتروژن آلی خاک از سال 1900 (پوشش گیاهی بومی قبل از تغییر کاربری و مدیریت) تا سال 2020 (وضعیت کنونی) و تعریف سناریوهای مدیریتی تا سال 2100 برای چمنزارها، مراتع و مزارع منطقه سارال استان کردستان است. نتایج نشان داد ورودی کربن آلی به خاک طی سال‌های 1963 تا 2009 پس از تغییر کاربری‌های مرتع به مزارع نخود و چمنزار به مزارع گندم به ترتیب 96/0 و 05/1 مگاگرم در هکتار در سال کاهش‌یافته است. بیشترین مقادیر ذخایر کربن و نیتروژن آلی در اثر اعمال سناریو 3 (چرای حداقل دام با کوددهی بعلاوه مدیریت تناوب زراعی، بی‌خاکورزی و کوددهی) از سال 2020 لغایت 2100 در کاربری چمنزار به ترتیب با 16/71 و 01/4 مگاگرم در هکتار و کمترین مقادیر ذخایر کربن و نیتروژن آلی از سال 1978 لغایت 2009 به ترتیب در کاربری گندم با 75/27 و کاربری نخود با 29/2 مگاگرم در هکتار برآورد شد. نتایج مؤید آن است مدیریت چرای حداقل همراه با مصرف کود اوره در مراتع و چمنزارها و رعایت تناوب زراعی گندم – نخود – گندم - گل‌رنگ و بی‌خاکورزی و کشت مستقیم همراه با کوددهی با کود اوره، سوپر فسفات و کود حیوانی بهترین راهکارها و سناریوهای تعریف‌شده در جبران ذخایر کربن و نیتروژن آلی خاک و دستیابی به تولید پایدار در زراعت گندم و نخود در منطقه سارال کردستان است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulating soil carbon and nitrogen dynamics in various managements through CENTURY model at Saral area in West Iran

نویسندگان [English]

  • Pourya Shahsavari 1
  • Mohammad Amir Delavar 1
  • Parviz Karami 2
  • Kamal Nabiollahi 3
1 Department of soil science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 Department of Rangeland Science, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran.
3 Department of soil science, Faculty of Agriculture, Kurdistan University,, Sanandaj, Iran.
چکیده [English]

Nowadays grasslands and pastures transmission to agricultural lands reduces soil qualities and wastes carbon and nitrogen of soil. The aim of this study is to calibrate and validate the Century model to assess soil organic carbon and nitrogen sources from 1900 (native vegetation conditions before land use and management change) to 2020 (current situation) and predict management scenarios until 2100 for grasslands, pastures, and cropland of Saral region of Kurdistan province. The results have showed that organic carbon input has been decreased after the land use change from the pasture to pease and grassland to wheat from 1963 to 2009, it has been decreased 0.96 and 1.05 mg/ha/y, respectively. The maximum amount of soil organic carbon and nitrogen in Scenario 3 (minimum grazing with fertilization in addition to management of crop rotation, no-tillage and fertilization) from 2020 to 2100 in grassland were 71.16 and 4.01 mg/ha, and the lowest soil organic carbon and nitrogen stocks between the 1978 and 2009 were have been estimated in wheat 27.75 mg/ha and pease 2.29 mg/ha, respectively. The results confirm that minimal grazing management along with the use of urea fertilizer in pastures and grasslands and observance of wheat-pease and wheat-safflower crop rotation and no-tillage and direct cultivation with urea fertilizer, superphosphate and animal manure are the best solutions and scenarios for compensating soil organic carbon and nitrogen sources and achieving sustainable production in wheat and peas cultivation in Saral region of Kurdistan.

کلیدواژه‌ها [English]

  • Carbon Sequestration
  • Management Scenarios
  • Modeling
  • Mollisols
  • Soil Organic Carbon

Background:

Simulation models are critical instruments for the long-term estimation of carbon and nitrogen dynamics. These models present proper methods for reducing carbon and greenhouse gas emissions into the atmosphere and soil conservation and vegetation. The Century model is one of the most successful models used to simulate the consequence of environmental changes and management actions on natural ecosystems under management scenarios on local, regional, and global scales. Pastures and grasslands, as part of the natural ecosystem, play a vital role in regulating the global carbon cycle, carbon sequestration, and climate change. Recently transforming pastures to agriculture is one of the biggest challenges that cause to reduction of soil qualities and the amount of carbon. Moreover, it might lead to a long-term decrease in land productivity and ecological destruction. On the other side, the performance of appropriate agricultural management affects soil organic carbon and nitrogen and can improve soil quality, increase biodiversity and protect the environment.

Objective:

This study aimed to calibrate and validate the Century model to assess soil organic carbon and nitrogen sources from 1900 (native vegetation conditions before land use change and management change) to 2020 (current situation) and predict management scenarios until 2100 for grasslands, pastures, and cropland of Saral region of Kurdistan province.

Material and Methods:

The model was parameterized using measured data through soil and plant samples and local climate data. The model was calibrated by matching the simulated data with a set of observed soil organic carbon data.

Results:

The statistical analysis of the measured and simulated data in the validation steps showed that the Century model could predict changes in soil carbon and total nitrogen stocks in different land-uses and managements, including pasture, crop rotation, other tillage methods, and fertilization. The calculated root means square of error (RMSE) for the soil organic carbon and nitrogen data was 7.39% and 1.49%, respectively, with 95% confidence. The model performance results for different time series and scenarios in each land use showed that land-use change caused irreversible damage to soil organic carbon storages. Organic carbon input decreased after the land-use change (0.96 and 1.05 mg/ha/y, respectively, for the pasture to pease and grassland to wheat from the year 1963 to the year 2009). Based on the model results, the maximum amount of soil organic carbon and nitrogen in Scenario 3 from 2020 to 2100 was71.16 mg/ha and 4.01 mg/ha, respectively. Between the 1978 and 2009 (course II), the lowest soil organic carbon and nitrogen stocks were estimated in wheat and pease land-use (27.75 mg/ha and 2.29 mg/ha, respectively). The best scenario for the increase of soil organic carbon and total nitrogen stocks and sustainable production of wheat and pease was identified using the century model in the sacral region of Kurdistan. This scenario includes least grazing management with urea fertilizer application in pasture and grassland, observance of wheat- pease and wheat-safflower crop rotation, no-tillage, direct cultivation with urea fertilizer, superphosphate, and manure.

Conclusion:

The century model could be applied to enhance the understanding of the conditions of the soil and ecosystem of this region and other similar areas. This model also shows a crucial role in predicting soil organic carbon and nitrogen stocks by concentrating on agricultural potential and systematic management of grasslands and pastures to reduce the harmful effects of global climate change and in particular, greenhouse gas emissions.

Author Contributions

Conceptualization, Pouria Shahsavari and Mohammad Amir Delavar; Methodology, Pouria Shahsavari and Kamal Nabiollahi; Software, Pouria Shahsavari and Parviz Karami; writing—original draft preparation, Pouria Shahsavari; writing—review and editing, Pouria Shahsavari and Mohammad Amir Delavar.

Data Availability Statement

Data is available on request from the authors.

Acknowledgements

The authors would like to thank the University of Zanjan, Zanjan, Iran for the financial support of this research and would like to thank all reviwers.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Abdolahi, A., Nemati, A., & Valizadeh, G.R. )2015(. Study on effects of different crop rotations based on wheat on soil physicochemical properties and economical performance in dryland condition of Kermanshah. Iranian Journal of Rainfed Agriculture. 2(2), 161-202. (In Persian)
Agricultural Research, Education and Extension Organization (AREEO). )2016(. Enhancing food security in Iran.
Althoff, T.D., Menezes, R.S.C., de Siqueira Pinto, A., Pareyn, F.G.C., de Carvalho, A.L., Martins, J.C.R., de Carvalho, E.X., da Silva, A.S.A., Dutra, E.D., & Sampaio, E.V.D.S.B. (2018). Adaptation of the century model to simulate C and N dynamics of Caatinga dry forest before and after deforestation. Agriculture, Ecosystems and Environment. 254, 26-34.
Amari, P., & Keshmiri, F. (1990). Soil studies and land classification for irrigation and taming of Saral Research Station in Kurdistan Province. Soil and Water Research Institute. Technical Journal No. 837. (In Persian)
Assis, C.P., de Oliveira T.S., da Nóbrega Dantas J. d. A., & de Sá Mendonça E. (2010). Organic matter and phosphorus fractions in irrigated agroecosystems in a semi-arid region of Northeastern Brazil. Agriculture, Ecosystems and Environment. 138(1-2), 74-82.
Ayoubi, S., Emami, N., Ghaffari, N., Honarjoo, N., & Sahrawat, K. L. (2014). Pasture degradation effects on soil quality indicators at different hillslope positions in a semiarid region of western Iran. Environmental Earth Sciences. 71, 375–381.
Azad, B., & Afzali, S.F. (2020). Simulating soil organic carbon dynamics as affected by different water erosion scenarios and grazing management in semi-arid rangelands of Bajgah using the Century model. Soil Management and Sustainable Production. 9(4), 69-78.
Bayer, C., Martin-Neto, L., Mielniczuk, J., Diekow, J., & Amado, T.J.C. (2006). C and N stocks and the role of molecular recalcitrance and organomineral interaction in stabilizing soil organic matter in a subtropical Acrisol managed under no-tillage. Geoderma. 133, 258–268.
Bhattacharyya, T., Pal, K., Easter, M., Williams, S., Paustian, K., Milne, E., & Chandran P. (2007). Evaluating the Century C model using long-term fertilizer trials in the Indo-Gangetic Plains, India. Agriculture, Ecosystems and Environment. 122 (1), 73-83.
Black, A.L. (1986). Bulk density. In: Editor Methods of soil analysis. Part 1. Physical and Mineralogical Method.SSSa/ASA. Agronomy Monograph 9(4), 374-380.
Bordeleau, I.M., & Prevost, D. (1994). Nodulation and nitrogen fixation in extreme environment. Plant and Soil. 161, 115-125.
Bortolon, E., Mielniczuk, J., Tornquist C., Lopes, F., & Fernandes, F. (2009). Simulação da dinâmica do carbono e nitrogênioem um Argissolo do Rio Grande do Sulusandomodelo Century. Revista Brasileira de Ciência do Solo. 33(6), 1635-1646.
Bortolon, E.S.O., Mielniczuk, J., Tornquist, C.G., Lopes, F., & Bergamaschi, H. (2011). Validation of the Century model to estimate the impact of agriculture on soil organic carbon in Southern Brazil. Geoderma. 168, 156–166.
Bremner, J.M., & Mulvaney, C.S. (1982). Nitrogen-total. In: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, second ed. American Society of Agronomy, Madison. WI, pp. 595–624.
Carter, M. Gregorich, E., Acosta-Mercado, S., Anderson, D., & Lynn, T. (2008). Methods in soil protozoa. In: Soil Sampling and Methods of Analysis classification in semiarid mountainous environments. Geoderma. 193, 13-21.
Cerri, C.E.P., Coleman, K., Jenkinson, D.S., Bernoux, M., Victoria, R., & Cerri, C.C. (2003). Modeling soil carbon from forest and pasture ecosystems of Amazon, Brazil. Soil Science Society of America Journal. 67(6), 1879-1887.
Chen, H. Q., Marhan, S., Billen N., & Stahr, K. (2009). Soil organic carbon and total nitrogen stocks as affected by different land uses in Baden-Wurttemberg, southwest Germany. Journal Plant. Nutrition Soil Science. 172, 32-42.
Chen, S., Wang, W., Xu, W., Wang, Y., Wan, H., Chen, D., Tang, Z., Tang, X., Zhou, G., Xie, Z., Zhou, D., Shangguan, Z., Huang, J., He, J.S., Wang, Y., Sheng, J., Tang, L., Li, X., Dong, M., Wu, Y., Wang, Q., Wang, Z., Wu, J., Chapin, F.S., & Bai, Y. (2018). Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences. 115 (16), 4027–4032.
Chen, Y., Li, Y., Zhao, X., Awada, T., Shang, W., & Han, J. (2012). Effects of Grazing Exclusion on Soil Properties and on Ecosystem Carbon and Nitrogen Storage in a Sandy Rangeland of Inner Mongolia, Northern China. Environmental Management. 50, 622-632.
Cui, X., Wang, Y., Niu, H., Wu, J., Wang, S., Schnug, E., Rogasik, J., Fleckenstein, J., & Tang, Y. (2005). Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia. Ecological Research. 20, 519-527.
Derner, J., & Schuman, G. (2007). Carbon sequestration and rangelands: a synthesis of land management and precipitation effects. Journal of Soil and Water Conservation. 62, 77-85.
Falloon, P., & Smith, P. (2002). Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application. Soil Use and Management. 18(2), 101–111.
Falloon, P., Jones, C.J., Cerri, C.E., Al-Adamat, R., Kamoni, P., Bhattacharyya, T., Easter, M., Paustian, K., Killian, K., Coleman, K., & Milne, E. (2007). Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agriculture, Ecosystems and Environment. 122, 114–124.
Geraei, D.S., Hojati, S., Landi, A., & Cano, A.F. (2016). Total and labile forms of soil organic carbon as affected by land use change in southwestern Iran. Geoderma Regional. 7(1), 29-37.
Gilmanov, T.G., Parton, W.J., & Ojima, D.S. (1997). Testing the ‘CENTURY’ecosystem level model on data sets from eight grassland sites in the former USSR representing a wide climatic/soil gradient. Ecological Modelling. 96 (1-3), 191-210.
Goh, T.B., Arnaud, R.J., & Mermut, A.R. (1993). Aggregate stability to water. In: Carter, M.R. (ed). Soil Sampling and Methods of Analysis.Canadian Society of Soil Science. Lewis Publishers, Boca Raton.177-180.
Golchin, A., & Asgari, H. (2008). Land use effects on soil quality indicators in northeastern Iran. Australian Journal of Soil Research. 46, 27–36.
Gomes, A.G., & Varriale, M.C. (2004). Modelagem de ecossistemas: umaintrodução. UFSM, Santa Maria, 2nd ed. 503 p. (In Portuguese)
Guan, Z.H., Li X.G., Wang L., Mou X.M., & Kuzyakov Y. (2018). Conversion of Tibetan grasslands to croplands decreases accumulation of microbially synthesized compounds in soil. Soil Biology and Biochemistry, 123: 10-20.
Gupta, S., & Kumar, S. (2017). Simulating climate change impact on soil carbon sequestration in agro-ecosystem of mid-Himalayan landscape using CENTURY model. Environment Earth Science. 76, 394.
Halvorson, A.D., Peterson, G.A., & Reule, C.R. (2002). Tillage system and crop rotation effects on dryland crop yields and soil carbon in the central Great Plains. Agronmy Journal. 94, 1429–1436.
Heidari, P., Hojati, S., Enayatizamir, N., & Rayatpisheh, A. (2016). Effects of land use change on C stock and some biological characteristics of soils in parts of Rakaat watershed, east of Khuzestan province. Iranian Journal of Range and Desert Research. 24, 819-835. (In Persian)
Hickman, K. R., & Hartnett, D. C. (2002). Effects of grazing intensity on growth, reproduction, and abundance of three palatable forbs in Kansans tallgrass prairie. Plant Ecology. 159, 23-24.
Hobley, E., Baldock, J., Hua, Q., & Wilson, B. (2017). Land-use contrasts reveal instability of subsoil organic carbon. Global Change Biology. 23 (2), 955–965.
Holechek, J. L Pipe r, R.D., & Carlton, H.H. (1989) Range Management: Principles and Practices. Third edition. Prentice-Hall, Upper Saddle River, New Jersey.
Jagadamma, S., & Lal, R. (2010). Distribution of organic carbon in physical fractions of soils as affected by agricultural management. Biology and Fertility of Soils, 46(6), 543-554.
Kaczynski, R., Siebielec, G., & Hanegraaf, C. (2017). Modelling soil carbon trends for agriculture development scenarios at regional level. Geoderma. 286, 104-115.
Kane, D., & Solutions, L.L.C. (2015). Carbon sequestration potential on agricultural lands: a review of current science and available practices. In Natl. Sustain. Agric. Coalit. Wash. DC USA.
Karami, P. (2010). Simulation of rangeland ecosystems performance in west of Iran using CENTURY model (Case study: Saral region of Kurdistan). Ph.D Thesis in Rangeland Science, Gorgon University of Agricultural Sciences and Natural Resources.
Karlen, D.L., Kumar, A., Kanwar, R.S., Cambardella, C.A., & Colvin, T.S. (1998). Tillage system effects on 15-year carbon-based and simulated N budgets in a tile-drained Iowa field. Soil Tillage Research. 48, 155–165.
Kennedy, I. R., Choudhury, A. T. M. A., Kecskes, M. L., Roughley R. J., & Hien, N. T. (2004). Non symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biology &Biochemistry. 36(8), 1229-1244.
Klute, A. (1986). Water retention: Laboratory methods. In: Klute, A. (ed). Methods of soil analysis. Part 1. Physical and Mineralogical Methods.2nd ed. Agron.Monog.9.ASA/SSSA, Madison. 635-662.
Lakhani, D. B. N. K., Brown, M. C., & Park, D. G. (1985). Early seral communities in ulimestone quarry: and experimental study of treatment effects on cover and richness of vegetation. Journal of Applied Ecology. 22, 90-473.
Lal, R. (2001). Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Climate Change. 51, 35–72.
Lefèvre, C., Rekik, F., Alcantara, V., & Wiese, L. (2017). Soil organic carbon: the hidden potential. Food and Agriculture Organization of the United Nations (FAO).
Leiber-Sauheitl, K., Fuß, R., & Freibauer. M. (2013). High greenhouse gas fluxes from grassland on histicgleysol along soil carbon and drainage gradients. Biogeosciences. 10, 11283–11317
Leite, L.F.C., Mendonça, E.S., & Machado, P.L.O.A. (2004). Simulaçãopelomodelo Century da dinâmica da matériaorgânica de um argissolo sob adubação mineral e orgânica. Revista Brasileira de Ciência do Solo. 28, 347–358 (In Portuguese).
Liu, D., Huang Y., An, S., Sun H., Bhople P., & Chen Z. (2018). Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients. Catena. 162: 345-353.
Lopes, F., Merten, G.H., Mielniczuk, J., Tornquist, C.G., & Oliveira, E.S. (2008). Simulação da dinâmica do carbono do solo numamicrobacia rural pelomodelo Century. Pesquisa Agropecuária Brasileira. 43(6), 745-753.
Martens, D.A., Reedy, T.E., & Lewis, D.T. (2003). Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Global Change Biology. 10, 65–78.
Mcsherry, M.E., & Ritchie, M.E. (2013). Effects of grazing on grassland soil carbon: a global review. Global Change Biology. 19, 1347-1357.
Metherel, A.K., Harving, L.A., Cole, C.V., & Parton, W.J. (1994). Century: soil organic matter model environment. Technical Documentation Agrosystem Version 4.0. USDAARS, Fort Collins.
Mielniczuk, J., Bayer, C., Vezzani, F.M., Lovato, T., Fernandes, F.F., & Debarba, L. (2003). Manejo de solo e culturas e suarelação com osestoques de carbono e nitrogênio do solo. Tópicosem Ciência do Solo. 3, 209–241 (In Portuguese)
Musinguzi, P., Ebanyat, P., Tenywa, J.S., Mwanjalolo, M., Basamba, T.A., Tenywa, M.M., & Porter, C. (2014). Using DSSAT-CENTURY model to simulate soil organic carbon dynamics under a low-input maize cropping system. Global Biogeochemical Cycles. 8, 105-123.
Nabiollahi, K. (2005). Evolution of clay minerals and their relationship with different forms of potassium in the soils of Kharkeh research station in Kurdistan province. M.Sc. Thesis in Soil Science, Gorgan University of Agricultural Sciences and Natural Resources. (In Persian).
Nardoto, G.B., Ometto, J.P.H.B., Ehlerringer, J.R., Bastamante, M.M.C., & Martinelli, L.A. (2008). Understanding the influences of spatial patterns on N availability within the Brazilian Amazon Forest. Ecosystems. 11, 1234–1246.
NREL. Natural Resource Ecology Laboratory. Century 4. Available at: www.nrel.colostate.edu/projects/century (Verified in 5 December 2009).
Ouyang, W., Shan, Y., Hao, F., & Lin, C. (2014). Differences in soil organic carbon dynamics in paddy fields and drylands in northeast China using the CENTURY model. Agriculture, Ecosystems and Environment. 194, 38-47.
Owensby, C.E., Myde, R.M., & Anderson, K.L. (1970). Effects of clipping and supplemental nitrogen and water on loamy upland bluestem range. Journal of Range Management·. 23, 6-341.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., & van Ypserle, J. P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). IPCC.
Page, A.L., Miller, R.H., & Keeney, D.R. (1992). (ed.). Methods of soil analysis. Part. II.2nd. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 1159.
Parras-Alcántara, L., Martín-Carrillo, M., & Lozano- García, B. (2013). Impacts of land use change in soil carbon and nitrogen in a Mediterranean agricultural area (Southern Spain). Solid Earth. 4, 167–177.
Parton, W.J., Schimel, D.S., Cole, C.V., & Ojima, D.S. (1987). Analysis of factors controlling soil organic matter levels in Great Plains Grasslands 1. Soil Science Society of America Journal. 51 (5), 1173-1179.
Parton, W.J., Scurlock, J.M.O., Ojima, D.S., Gilmanov, T.G., Scholes, R.J., Schimel, D.S., Kirchner, T., Menaut, J.C., Seastedt, T., Garcia Moya, E., & Kamnalrut, A. (1993).Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global biogeochemical cycles. 7 (4), 785-809.
Parton, W.J., Stewart, J.W., & Cole, C.V. (1988). Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry. 5 (1), 109-131.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G.P., & Smith, P. (2016). Climate-smart soils. Nature. 532 (7597), 49-67.
Paustian, K., Parton, W.J., & Persson, J. (1992). Modeling soil organic matter in organic amended and nitrogen-fertilized long-term plots. Soil Science Society of America Journal. 56, 476–488.
Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B., Schumacher, J., & Gensior, A. (2011). Temporal dynamics of soil organic carbon after land-use change in the temperate zone-carbon response functions as a model approach. Global Change Biology. 17, 2415–2427.
Qiu, X., Peng, D., Wang, H., Wang, Z., & Cheng, S. (2019). Minimum data set for evaluation of stand density effects on soil quality in Larix principis-rupprechtii plantations in North China. Ecological Indicators. 103, 236-247.
Saied, M. S., Ghanbari, A., Ramroudi, M., & Khezri, A. (2016). Effects of Green Manure Management and Fertilization Treatments on the Chemical and Physical Properties and Fertility of Soil. Water and Soil Science. 21, 37-49.
Schuman, G. E, Reeder, J. D, Manley, J.T, Hart, R. H., & Manley, W. A. (1999). Impact of grazing management on the carbon and nitrogen balance of a mixed – grass rangeland. Ecological Applications. 9, 65-71.
Sharifzadegan, M.H. (2019). Reviewing and preparing the planning document of Kurdistan province. Shahid Beheshti University. Tehran.
Sicardi, M., Garcia-Prechac F., & Frioni L. (2004). Soil microbial indicators sensitive to land use conversion from pastures to commercial Eucalyptus grandis (Hill ex Maiden) plantations in Uruguay. Applied Soil Ecology. 27, 125–133.
Siddique, I., Engel, V.L., Parrotta, J.A., Lamb, D., Nardoto, G.B., Ometto, J.P.H.B., Martinelli, L.A., & Schmidt, S. (2008). Dominance of legumes trees alters nutrient relations in mixed species forest restoration plantings within seven years. Biogeochemistry. 88, 89–101.
Singh, A.K., Rai A., & Singh N. (2016). Effect of long term land use systems on fractions of glomalin and soil organic carbon in the Indo-Gangetic plain. Geoderma. 277, 41-50.
Six, J., Conant, R.T., Paul, E.A., & Paustian, K. (2002a). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil. 241, 155–176.
Six, J., Feller, C., Denef, K., Ogle, S.M., Sá, J.C.M., & Albrecht, A. (2002b). Soil organic matter, biota and aggregation in temperate and tropical soils - effects of no-tillage. Agronomy. 22, 755–775.
Soil Survey Staff. (2014). Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC.
Taghdisi Heydarian, Z., Khorasani, R., & Emami, H. (2019). Effect of zeolite and cow manure on some physical properties of soil. Iranian Journal of Water and Soil Conservation. 25(5), 149-166. (In Persian)
Tornquist, C.G., Mielniczuk, J., & Cerri, C.E.P. (2009). Modeling soil organic carbon dynamics in Oxisols of Ibirubá (Brazil) with the Century Model. Soil and Tillage Research. 105, 33-43.
Trumbmore, S.E., Davidson, E.A., Barbosa, P., Nepstad, D.D. & Martinelli, L.A. (1995). Belowground cycling of carbon in forests and pastures of eastern Amazonia. Global Biogeochemical Cycles. 9, 515-528.
UNFCCC. (2015). Decision 1/CP.21: Adoption of the Paris Agreement. Paris Climate Change Conference; 2015 Nov 30–Dec 11; Paris, France.
Upendra, M.S., Zachary, N.S., Ermson, Z.N., Irenus, A.T., & Reddy, K.C. (2008). Soil carbon and nitrogen sequestration as affected by long-term tillage, cropping systems, and nitrogen fertilizer sources. Agriculture, Ecosystems and Environment. 127, 234–240.
Van Leeuwen, J.P., Djukic, I., Bloem, J., Lehtinen, T., Hemerik, L., de Ruiter, P.C., & Lair G.J. (2017). Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain. European Journal of Soil Biology. 79, 14-20.
Van Soest, P.J., Robertson, J.B., & Lewis, B.A. (1991). Methods of dietary fiber, neutral detergent fiber and non-starch polysaccharide in relation to animal nutrition. Journal of Dairy Science. 74, 3583-3597.
Vereecken, H., Jansen, EJ, Hack-ten Broeke, M.J.D., Swerts, M., Engelke, R., Fabrewitz, S., & Hansen, S. (1991). Comparison of simulation results of five nitrogen models using different datasets. Commission of European Communities Soil and Groundwater Research, Report II Nitrate in Soils Luxembourg. Commission of the European Communities. 321–338.
Walkley, A., & Black, I.A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science. 37 (1), 29-38.
Waters, C.M., Orgill, S.E., Melville, G.J., Toole, I.D., & Smith, W.J. (2016). Management of grazing intensity in the semi-arid rangelands of southern Australia–effects on soil and biodiversity. Land Degradation and Development. 28(4), 1363-1375.
Wilson, C., Papanicolaou, A., & Abaci, O. (2009). SOM dynamics and erosion in an agricultural test field of the Clear Creek, IA watershed. Hydrology and Earth System Sciences Discussions. 6, 1581-1619.
Yazdanparast, P. (2008). Investigating the relationship between vegetation factors and habitat characteristics (Edaphic and Physiographic) case study of Saral Research Station area in Kurdistan Province, M.Sc. Thesis Islamic Azad University, Science and Research Branch. 88-87. (In Persian)