استفاده از ترکیب رویکردهای سنجش از دور و یادگیری ماشین در پیش‌بینی پارامترهای هیدرولوژیکی: یک مطالعه علم‌سنجی

نوع مقاله : مروری

نویسندگان

1 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران.

2 گروه مهندسی عمران، دانشکده مهندسی، دانشگاه بیرجند، بیرجند، ایران.

10.22059/ijswr.2025.386927.669850

چکیده

ادغام داده‌های سنجش از دور با تکنیک‌های یادگیری ماشین، رویکردی نوین و مؤثر در پیش‌بینی پارامترهای هیدرولوژیکی از جمله تبخیر-تعرق، رطوبت خاک و دما محسوب می‌شود. این پژوهش با هدف تحلیل علم‌سنجی روندهای تحقیقاتی و همکاری‌های بین‌المللی در این حوزه انجام شده است. بدین منظور، داده‌های مرتبط از پایگاه اطلاعاتی Web of Science استخراج و با استفاده از نرم‌افزارهای Bibliometrix و VOSviewer تحلیل شدند. این تحلیل‌ها روابط بین مقالات، نویسندگان، کلمات کلیدی و کشورها را آشکار ساختند. نتایج نشان دادند که مدل‌های یادگیری ماشین پیشرفته نظیر شبکه‌های عصبی مصنوعی (ANN) و جنگل تصادفی (RF) در ترکیب با داده‌های سنجش از دور منابعی مانند MODIS، Sentinel و SMAP، به‌ویژه در مناطق با محدودیت داده‌های زمینی، کاربرد گسترده‌ای دارند. همچنین، استفاده از داده‌های چندمنبعی و الگوریتم‌های پیشرفته یادگیری ماشین در راستای شبیه‌سازی دقیق‌تر پارامترهای هیدرولوژیکی و پیش‌بینی تغییرات اقلیمی و خشکسالی‌ها به عنوان روندهای نوظهور شناسایی شدند. علاوه بر این، افزایش استفاده از داده‌های ماهواره‌ای مانند MODIS، SMAP و شاخص NDVI در تحلیل پارامترهای هیدرولوژیکی در مناطق با کمبود داده‌های زمینی از دیگر یافته‌های مهم این پژوهش است. این مطالعه ضمن شناسایی روندهای کلیدی، به بررسی چالش‌ها، شکاف‌های تحقیقاتی و ارائه پیشنهاداتی برای پژوهش‌های آتی در این حوزه می‌پردازد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of the Combination of Remote Sensing and Machine Learning Approaches in Predicting Hydrological Parameters: A Bibliometric Analysis

نویسندگان [English]

  • Moein Tosan 1
  • Raziyeh Shamshirgaran 2
  • Mehdi Dastourani 1
1 Department of Water Science and Engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran.
2 Department of Civil Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.
چکیده [English]

The integration of remote sensing data with machine learning (ML) techniques has emerged as a robust and effective paradigm for predicting key hydrological parameters, including evapotranspiration, soil moisture content, and land surface temperature. This study presents a comprehensive scientometric analysis of research trends and international collaborative networks within this rapidly evolving field. Data pertinent to this investigation were retrieved from the Web of Science Core Collection database and subsequently analyzed using the Bibliometrix R package and VOSviewer software. These analyses facilitated the identification and visualization of complex interrelationships among scholarly publications, contributing authors, topical keywords, and affiliated countries/institutions. The findings reveal a prominent trend toward the application of advanced ML algorithms, such as Artificial Neural Networks (ANNs) and Random Forest (RF), in conjunction with remotely sensed data acquired from platforms like MODIS, Sentinel, and SMAP, particularly in regions characterized by limited in situ observational data. Furthermore, the utilization of multi-source data fusion and sophisticated ML algorithms for enhanced simulation accuracy of hydrological processes and improved predictive capabilities for climate change impacts and drought events has been identified as a key emerging research direction. Notably, the increasing reliance on satellite-derived datasets, including MODIS, SMAP, and the Normalized Difference Vegetation Index (NDVI), for hydrological parameter estimation in data-scarce environments constitutes another significant observation. Beyond identifying prevailing research trends, this study critically examines existing challenges, knowledge gaps, and potential avenues for future research endeavors in this domain.

کلیدواژه‌ها [English]

  • Data integration
  • Scientometric analysis
  • Multi-source data
  • Research trends
  • Hydrology

Introduction:

Hydrology, as a critical discipline in environmental sciences, faces significant challenges in monitoring and forecasting water resources under complex and changing climatic conditions. Traditional hydrological methods, which rely primarily on ground-based data and physical models, are often limited in terms of spatial coverage, temporal resolution, and computational efficiency. In recent years, Remote Sensing (RS) and Machine Learning (ML) have emerged as transformative tools to address these limitations. Remote sensing provides extensive, global coverage data, enabling the monitoring of hydrological variables across diverse landscapes and climates. However, the processing, interpretation, and integration of these vast datasets require advanced computational techniques. Machine learning plays a crucial role in efficiently processing these data, identifying patterns, making predictions, and optimizing hydrological models. The integration of RS and ML offers substantial potential for hydrology, particularly in flood forecasting, drought monitoring, watershed management, and groundwater resource assessment. These technologies can help overcome major challenges faced by hydrologists, such as data gaps, high computational costs, and the complexity of hydrological systems. This study aims to explore the integration of these technologies, identify key research trends, and propose future directions to enhance the joint application of RS and ML in hydrology.

Method:

The methodology adopted for this study involves a bibliometric analysis to assess the application of remote sensing and machine learning in hydrology. Bibliometric analysis examines various scholarly outputs, researchers, and institutions in a specific scientific domain to identify research trends, collaboration networks, and knowledge structures. The analysis was performed in five key stages. Initially, precise research questions were defined to guide the study, followed by the selection of relevant research articles from the Web of Science database. The research used Boolean search strings to extract articles based on keywords related to remote sensing, machine learning, and various hydrological sciences. Data collection involved gathering bibliographic information such as article titles, authors, citations, keywords, and abstracts. This study used the Bibliometrix R package for the analysis, which is equipped with statistical algorithms, numerical methods, and visualization capabilities. Network analysis and keyword clustering were conducted using tools like Bibliophagy within the Bibliometrix package, facilitating the identification of prominent research trends, influential authors, and emerging topics in the field.

Results:

The bibliometric analysis revealed key trends and gaps in the integration of remote sensing and machine learning in hydrological research. A significant portion of the literature focuses on the application of RS data, such as satellite imagery and airborne observations, in hydrological modeling, particularly in flood prediction, river discharge, and precipitation estimation. Machine learning techniques such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), and Decision Trees have been employed to improve prediction accuracy in these areas. More recent studies have shifted toward deep learning techniques like Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), demonstrating superior performance in handling complex hydrological processes. However, challenges remain, particularly in integrating the temporal and spatial dimensions of RS data into ML models. Additionally, data scarcity, especially in developing countries, limits the training of robust ML models. The analysis also highlighted a lack of comprehensive interdisciplinary frameworks that integrate various aspects of hydrological systems, suggesting the need for more holistic approaches in future research.

Conclusions:

The integration of remote sensing and machine learning holds significant promise for advancing hydrological modeling and improving water resource management. This study underscores the need for continued innovation in techniques to address existing challenges, particularly the effective integration of temporal and spatial RS data into ML models. Future research should focus on developing interdisciplinary frameworks that account for the complexity of hydrological systems and address data gaps, especially in regions with limited access to high-quality datasets. The study also emphasizes the importance of collaboration among researchers, institutions, and governments to foster knowledge exchange and promote the development of scalable, efficient, and accurate models for hydrological predictions. By advancing these methodologies, hydrologists can better tackle the global challenges posed by climate change and environmental uncertainty, ensuring more reliable water resource management for the future.

Author Contributions:

For the article titled Integration of Remote Sensing Data and Advanced Machine Learning Techniques for Hydrological Prediction and Analysis: Emerging Approaches and Challenges, the contributions of the authors are as follows:

Conceptualization: Moein Tosan, Raziyeh Shamshirgaran, Abolfazl Akbarpour; Methodology: Moein Tosan; Software: Raziyeh Shamshirgaran; Validation: Moein Tosan, Raziyeh Shamshirgaran, Abolfazl Akbarpour; Formal Analysis: Moein Tosan; Investigation: Moein Tosan; Resources: Raziyeh Shamshirgaran; Data Curation: Raziyeh Shamshirgaran; Writing—Original Draft Preparation: Moein Tosan; Writing—Review and Editing: Moein Tosan, Raziyeh Shamshirgaran, Abolfazl Akbarpour; Visualization: Raziyeh Shamshirgaran; Supervision: Abolfazl Akbarpour; Project Administration: Abolfazl Akbarpour; Funding Acquisition: Abolfazl Akbarpour; All authors have read and agreed to the published version of the manuscript.

Data Availability Statement:

Data available on request from the authors.

Ethical considerations:

This study did not require approval from an ethics committee. The authors declare that no data fabrication, falsification, plagiarism, or any form of misconduct was involved in the research.

Conflict of interest

The author declares no conflict of interest.

Abbes, A. B., Jarray, N., & Farah, I. R. (2024). Advances in remote sensing based soil moisture retrieval: applications, techniques, scales and challenges for combining machine learning and physical models. Artificial Intelligence Review, 57(9), 224.
Abegeja, D. (2024). The application of satellite sensors, current state of utilization, and sources of remote sensing dataset in hydrology for water resource management. Journal of Water and Health, 22(7), 1162-1179.
Adams, K. H., Reager, J. T., Rosen, P., Wiese, D. N., Farr, T. G., Rao, S., ... & Rodell, M. (2022). Remote sensing of groundwater: current capabilities and future directions. Water Resources Research, 58(10), e2022WR032219.‏
Akbarpour, A., Dastourani, M., Tosan, M., & Gharib, M. (2024). Performance analysis of finite element method in groundwater studies based on Web of Science using R Biblioshiny. Journal of Auifer and Qanat, 4(2), 131-148.
Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M., & Notarnicola, C. (2015). Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sensing, 7(12), 16398-16421.
Amani, S., & Shafizadeh-Moghadam, H. (2023). A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data. Agricultural Water Management, 284, 108324.‏
Amiri, A., Soltani, K., Ebtehaj, I., & Bonakdari, H. (2024). A novel machine learning tool for current and future flood susceptibility mapping by integrating remote sensing and geographic information systems. Journal of Hydrology, 632, 130936.
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4), 959-975.
Arias-Rodriguez, L. F., Tüzün, U. F., Duan, Z., Huang, J., Tuo, Y., & Disse, M. (2023). Global water quality of inland waters with harmonized landsat-8 and sentinel-2 using cloud-computed machine learning. Remote Sensing, 15(5), 1390.
Arruda, H., Silva, E. R., Lessa, M., Proença Jr, D., & Bartholo, R. (2022). VOSviewer and bibliometrix. Journal of the Medical Library Association: JMLA, 110(3), 392.
  Atalla, M. A., Shebl, A., Ðurin, B., Kranjčić, N., & AlMetwaly, W. M. (2024). Assessment of groundwater potential zones in Kuwait’s semi-arid region: a hybrid approach of multi-criteria decision making, Google earth engine, and geospatial techniques. Scientific reports, 14(1), 1-23.‏
Ayzel, G., Scheffer, T., & Heistermann, M. (2020). RainNet v1. 0: a convolutional neural network for radar-based precipitation nowcasting. Geoscientific Model Development, 13(6), 2631-2644.
Bai, Y., Zhang, S., Bhattarai, N., Mallick, K., Liu, Q., Tang, L., ... & Zhang, J. (2021). On the use of machine learning based ensemble approaches to improve evapotranspiration estimates from croplands across a wide environmental gradient. Agricultural and Forest Meteorology, 298, 108308.‏
Bogena, H. R., Weuthen, A., & Huisman, J. A. (2022). Recent developments in wireless soil moisture sensing to support scientific research and agricultural management. Sensors22(24), 9792
Boutin, J., Yueh, S., Bindlish, R., Chan, S., Entekhabi, D., Kerr, Y., ... & Zribi, M. (2023). Soil moisture and sea surface salinity derived from satellite-borne sensors. Surveys in Geophysics, 44(5), 1449-1487.
De Oliveira, O. J., da Silva, F. F., Juliani, F., Barbosa, L. C. F. M., & Nunhes, T. V. (2019). Bibliometric method for mapping the state-of-the-art and identifying research gaps and trends in literature: An essential instrument to support the development of scientific projects. In Scientometrics recent advances. IntechOpen.
Do, T. N., Nguyen, D. M. T., Ghimire, J., Vu, K. C., Do Dang, L. P., Pham, S. L., & Pham, V. M. (2023). Assessing surface water pollution in Hanoi, Vietnam, using remote sensing and machine learning algorithms. Environmental Science and Pollution Research, 30(34), 82230-82247.‏
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of business research, 133, 285-296.
Drogkoula, M., Kokkinos, K., & Samaras, N. (2023). A comprehensive survey of machine learning methodologies with emphasis in water resources (management. Applied Sciences, 13(22), 12147.
Duan, X., Maqsoom, A., Khalil, U., Aslam, B., Amjad, T., Tufail, R. F., ... & Tariq, A. (2024). Enhancing soil moisture retrieval in semi-arid regions using machine learning algorithms and remote sensing data. Applied Soil Ecology204, 105687.
Felegari, S., Sharifi, A., Khosravi, M., Sabanov, S., Tariq, A., & Karuppannan, S. (2023). Using Sentinel-2 data to estimate the concentration of heavy metals caused by industrial activities in Ust-Kamenogorsk, Northeastern Kazakhstan. Heliyon9(11).‏
Ghorbani, B. D. (2024). Bibliometrix: Science Mapping Analysis with R Biblioshiny Based on Web of Science in Applied Linguistics. In A Scientometrics Research Perspective in Applied Linguistics (pp. 197-234). Springer.
Hadadi, F., Moazenzadeh, R., & Mohammadi, B. (2022). Estimation of actual evapotranspiration: A novel hybrid method based on remote sensing and artificial intelligence. Journal of Hydrology, 609, 127774.
Hafeez, S., Wong, M. S., Abbas, S., & Asim, M. (2022). Evaluating landsat-8 and sentinel-2 data consistency for high spatiotemporal inland and coastal water quality monitoring. Remote Sensing, 14(13), 3155.‏،
Han, H., Liu, Z., Li, J., & Zeng, Z. (2024). Challenges in remote sensing based climate and crop monitoring: navigating the complexities using AI. Journal of cloud computing, 13(1), 34.
Im, J., Park, S., Rhee, J., Baik, J., & Choi, M. (2016). Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches. Environmental Earth Sciences, 75, 1-19.
Ke, Y., Im, J., Park, S., & Gong, H. (2016). Downscaling of MODIS one kilometer evapotranspiration using Landsat-8 data and machine learning approaches. Remote Sensing, 8(3), 215.
Kim, J., Lee, M., Han, H., Kim, D., Bae, Y., & Kim, H. S. (2022). Case study: Development of the CNN model considering teleconnection for spatial downscaling of precipitation in a climate change scenario. Sustainability, 14(8), 4719.
Kim, J., & Parolin, B. (2021). Deep learning-based soil moisture retrieval from remotely sensed data: A review. Remote Sensing, 13(19), 398
Kim, Y. I., Park, W. H., Shin, Y., Park, J.-W., Engel, B., Yun, Y. J., & Jang, W. S. (2024). Applications of Machine Learning and Remote Sensing in Soil and Water Conservation.
Krishnaraj, A., & Honnasiddaiah, R. (2022). Remote sensing and machine learning based framework for the assessment of spatio-temporal water quality in the Middle Ganga Basin. Environmental Science and Pollution Research, 29(43), 64939-64958.‏
Li, F., Yigitcanlar, T., Nepal, M., Nguyen, K., & Dur, F. (2023). Machine learning and remote sensing integration for leveraging urban sustainability: A review and framework. Sustainable Cities and Society, 96, 104653.
Li, Y., Wang, W., Wang, G., & Tan, Q. (2022). Actual evapotranspiration estimation over the Tuojiang River Basin based on a hybrid CNN-RF model. Journal of Hydrology, 610, 127788.
Liu, Q., Wu, Z., Cui, N., Jin, X., Zhu, S., Jiang, S., ... & Gong, D. (2023). Estimation of soil moisture using multi-source remote sensing and machine learning algorithms in farming land of Northern China. Remote Sensing, 15(17), 4214.
‏ Liu, D., Wang, Z., Wang, L., Chen, J., Li, C., & Shi, Y. (2024). Improved remote sensing reference evapotranspiration estimation using simple satellite data and machine learning. Science of The Total Environment947, 174480.‏
Liu, G., Chen, L., Wang, W., Wang, S., Zhu, K., & Shen, Z. (2024). New paradigm for watershed model development by coupling machine learning algorithm and mechanistic model. Journal of Hydrology, 636, 131264.
Mahmoud, R., Hassanin, M., Al Feel, H., & Badry, R. M. (2023). Machine learning-based land use and land cover mapping using multi-spectral satellite imagery: A case study in Egypt. Sustainability, 15(12), 9467.
Maier, H. R., Taghikhah, F. R., Nabavi, E., Razavi, S., Gupta, H., Wu, W., Radford, D. A., & Huang, J. (2024). How much X is in XAI: Responsible use of “Explainable” artificial intelligence in hydrology and water resources. Journal of Hydrology X, 100185.
Matyukira, C., & Mhangara, P. (2024). Advances in vegetation mapping through remote sensing and machine learning techniques: a scientometric review. European Journal of Remote Sensing, 2422330.
Mekonnen, Y. G., Alamirew, T., Chukalla, A. D., Malede, D. A., Yalew, S. G., & Mengistu, A. F. (2024). Remote sensing in hydrology: A systematic review of its applications in the Upper Blue Nile Basin, Ethiopia. HydroResearch.
Nourani, V., Baghanam, A. H., Adamowski, J., & Gebremichael, M. (2013). Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling. Journal of Hydrology, 476, 228-243.
Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora, V. K., Haverd, V., Jain, A. K., & Kato, E. (2020). Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrology and Earth System Sciences, 24(3), 1485-1509.
Pangali Sharma, T. P., Zhang, J., Khanal, N. R., Prodhan, F. A., Paudel, B., Shi, L., & Nepal, N. (2020). Assimilation of snowmelt runoff model (SRM) using satellite remote sensing data in Budhi Gandaki River Basin, Nepal. Remote Sensing, 12(12), 1951.
Raman, R., & Rathi, T. (2024, March). Efficient Dam Water Level Management Using Cloud-Based Data Analytics and LSTM Networks. In 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO) (pp. 1-6). IEEE.‏
Rostami, A., Raeini-Sarjaz, M., Chabokpour, J., & Chadee, A. A. (2023). Soil moisture monitoring by downscaling of remote sensing products using LST/VI space derived from MODIS products. Water Supply, 23(2), 688-705.‏
Roy, S. K., Hasan, M. M., Mondal, I., Akhter, J., Roy, S. K., Talukder, S., ... & Karuppannan, S. (2024). Empowered machine learning algorithm to identify sustainable groundwater potential zone map in Jashore District, Bangladesh. Groundwater for Sustainable Development, 25, 101168.‏
Saha, A., & Pal, S. C. (2024). Application of machine learning and emerging remote sensing techniques in hydrology: A state-of-the-art review and current research trends. Journal of Hydrology, 130907.
Sahoo, B. B., Jha, R., Singh, A., & Kumar, D. (2019). Application of support vector regression for modeling low flow time series. KSCE Journal of Civil Engineering, 23, 923-934.
Shah, W., Chen, J., Ullah, I., & Shah, M. H. (2024). Application of RNN-LSTM in Predicting Drought Patterns in Pakistan: A Pathway to Sustainable Water Resource Management. Water16(11), 1492.‏
Shi, K., Han, J.-C., & Wang, P. (2024). Near real-time retrieval of lake surface water temperature using Himawari-8 satellite imagery and machine learning techniques: a case study in the Yangtze River Basin. Frontiers in Environmental Science, 11, 1335725.
Shu-feng, L., Zhi-hua, W., Shuai, G., & Yan-hu, H. (2024). An improved hydraulic method for calculating ecological flow considering the changes of rainfall and temperature within a year. Ecological Indicators, 167, 112677.
Srivastava, P. K., Han, D., Ramirez, M. R., & Islam, T. (2013). Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water resources management, 27, 3127-3144.
Talebi, H., & Samadianfard, S. (2024). Integration of machine learning and remote sensing for drought index prediction: A framework for water resource crisis management. Earth Science Informatics, 17(5), 4949-4968.
Tang, W., Zhao, X., Wang, J., Motagh, M., Xu, H., Ru, Z., & Wang, Y. (2024). Land surface response to groundwater drawdown and recovery in Taiyuan city, Northern China, analyzed with a long-term elevation change measurements from leveling and multi-sensor InSAR. Journal of Hydrology641, 131781.‏
Tao, Y., Gao, X., Hsu, K., Sorooshian, S., & Ihler, A. (2016). A deep neural network modeling framework to reduce bias in satellite precipitation products. Journal of Hydrometeorology, 17(3), 931-945.
Tosan, M., Gharib, M. R., Attar, N. F., & Maroosi, A. (2025). Enhancing Evapotranspiration Estimation: A Bibliometric and Systematic Review of Hybrid Neural Networks in Water Resource Management. Computer Modeling in Engineering & Sciences (CMES)142(2).
Tosan, M., Dastourani, M., Akbarpour, A., & Gharib, M. R. (2024). Global trend analysis of numerical simulation application in groundwater based on WoS database using VOSviewer and Biblioshiny between 1997 and 2023. Iranian Journal of Rainwater Catchment Systems, 12(2), 0-0.
Tosan, M., Khashei-Siuki, A., Maroosi, A., & Gharib, M. R. (2024). A Review of Smart Water Management for Sustainable Agriculture Based on the Internet of Things. Water Management in Agriculture, 11(1), 145-166.
Tosan, M., Khashei Siuki, A., Sangari, M., & Rezvani Moghaddam, P. (2024). Analysis of the global research trend of saffron (Crocus sativus L.) between 2000-2023. Saffron Agronomy and Technology, 12(2), 115-138.
Tosan, M., & Maroosi, A. Khozeymehnezhad, H. (2024). Investigating the performance of artificial rabbit optimization hybrid algorithm (ANN-ARO) in forecasting reference evapotranspiration with limited climatic parameters. Iranian Journal of Rainwater Catchment Systems, 12(1), 47-66.
Tysiąc, P., Strelets, T., & Tuszyńska, W. (2022). The application of satellite image analysis in oil spill detection. Applied Sciences12(8), 4016.‏
Van Hateren, T. C., Chini, M., Matgen, P., Pulvirenti, L., Pierdicca, N., & Teuling, A. J. (2023). On the potential of Sentinel-1 for sub-field scale soil moisture monitoring. International Journal of Applied Earth Observation and Geoinformation120, 103342.‏
Wallin, J. A. (2005). Bibliometric methods: pitfalls and possibilities. Basic & clinical pharmacology & toxicology, 97(5), 261-275.
Wang, L., Zhang, M., Gao, X., & Shi, W. (2024). Advances and challenges in deep learning-based change detection for remote sensing images: A review through various learning paradigms. Remote Sensing, 16(5), 804.
Xia, R., Sun, H., Chen, Y., Wang, Q., Chen, X., Hu, Q., & Wang, J. (2023). Ecological flow response analysis to a typical strong hydrological alteration river in China. International Journal of Environmental Research and Public Health, 20(3), 2609.
Xiong, J., Abhishek, Xu, L., Chandanpurkar, H. A., Famiglietti, J. S., Zhang, C., ... & Vishwakarma, B. D. (2023). ET-WB: water-balance-based estimations of terrestrial evaporation over global land and major global basins. Earth System Science Data15(10), 4571-4597.‏
Xiao, C., Chen, N., Hu, C., Wang, K., Xu, Z., Cai, Y., Xu, L., Chen, Z., & Gong, J. (2019). A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data. Environmental Modelling & Software, 120, 104502.
Xiao, Y., Chen, J., Xu, Y., Guo, S., Nie, X., Guo, Y., ... & Fu, Y. H. (2023). Monitoring of chlorophyll-a and suspended sediment concentrations in optically complex inland rivers using multisource remote sensing measurements. Ecological Indicators, 155, 111041.
Xu, T., Guo, Z., Xia, Y., Ferreira, V. G., Liu, S., Wang, K., Yao, Y., Zhang, X., & Zhao, C. (2019). Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States. Journal of Hydrology, 578, 124105.
Xu, Y., Hu, C., Wu, Q., Li, Z., Jian, S., & Chen, Y. (2021). Application of temporal convolutional network for flood forecasting. Hydrology Research, 52(6), 1455-1468.
Yang, Z., Gong, C., Lu, Z., Wu, E., Huai, H., Hu, Y., ... & Dong, L. (2023). Combined Retrievals of Turbidity from Sentinel-2A/B and Landsat-8/9 in the Taihu Lake through Machine Learning. Remote Sensing, 15(17), 4333.
Zafar, Z., Zubair, M., Zha, Y., Fahd, S., & Nadeem, A. A. (2024). Performance assessment of machine learning algorithms for mapping of land use/land cover using remote sensing data. The Egyptian Journal of Remote Sensing and Space Sciences, 27(2), 216-226.
Zhang, D., Hu, B., Chen, L., Qi, P., Wu, Y., Liu, X., ... & Zhang, W. (2024). Spatiotemporal variation of water level in wetlands based on multi-source remote sensing data and responses to changing environments. Science of The Total Environment, 955, 177060.‏
Zhang, S., Zhang, L., Meng, Q., Wang, C., Ma, J., Li, H., & Ma, K. (2024). Evaluating agricultural non-point source pollution with high-resolution remote sensing technology and SWAT model: A case study in Ningxia Yellow River Irrigation District, China. Ecological Indicators, 166, 112578.‏
Zhao, X., Wang, H., Bai, M., Xu, Y., Dong, S., Rao, H., & Ming, W. (2024). A Comprehensive Review of Methods for Hydrological Forecasting Based on Deep Learning. Water, 16(10), 1407.‏
Zhu, S., Wei, J., Zhang, H., Xu, Y., & Qin, H. (2023). Spatiotemporal deep learning rainfall-runoff forecasting combined with remote sensing precipitation products in large scale basins. Journal of Hydrology, 616, 128727.
Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational research methods, 18(3), 429-472.