بررسی تاثیر کاربرد بیوچار و اسید هیومیک بر محتوای عناصر غذایی و عملکرد دانه نخود زراعی (Cicer arietinum L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس

2 گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، ایران

10.22059/ijswr.2025.382702.669796

چکیده

به‌منظور  بررسی تأثیر اسید هیومیک و بیوچار بر ویژگی‌های کمی و کیفی گیاه نخود (Cicer arietinum L.)، آزمایشی به‌صورت فاکتوریل در قالب طرح پایه بلوک‌های کامل تصادفی با سه تکرار در مزرعه پژوهشی دانشگاه گنبد کاووس در سال زراعی 98-1397 انجام شد. فاکتورهای مورد بررسی شامل کاربرد بیوچار در دو سطح (عدم کاربرد و کاربرد 20 تن در هکتار) و اسید هیومیک در سه سطح (عدم مصرف، مصرف با آب آبیاری با غلظت 10 کیلوگرم در هکتار و مصرف با آب آبیاری به‌همراه دو بار محلول‌پاشی با غلظت 250 سی‌سی در 100 لیتر آب) بود. نتایج نشان داد که اثرات ساده بیوچار و اسید هیومیک بر صفات مختلف از جمله تعداد دانه‌، وزن کل بوته، وزن صد دانه، شاخص برداشت، عملکرد دانه، محتوای پروتئین و میزان عناصر نیتروژن، پتاسیم، کلسیم و منیزیم معنی‌دار بود. همچنین اثر متقابل این دو عامل بر وزن صد دانه، شاخص برداشت و عملکرد دانه معنی‌دار شد. استفاده از اسید هیومیک و بیوچار منجر به بهبود تمامی صفات مورد بررسی گردید. بیشترین عملکرد دانه (2983 کیلوگرم در هکتار) از تیمار مصرف اسید هیومیک به‌صورت یک‌بار خاک مصرف و دوبار محلول‌پاشی به‌همراه بیوچار به‌دست آمد و کمترین میزان عملکرد دانه (1368 کیلوگرم در هکتار) مربوط به تیمار عدم مصرف اسید هیومیک و بیوچار بود. همچنین بیشترین میزان پروتئین و نیتروژن و غلظت عناصر کلسیم، پتاسیم و منیزیم نیز در تیمار مصرف اسید هیومیک و بیوچار مشاهده شد. بنابراین، برای افزایش عملکرد گیاه نخود، استفاده از اسید هیومیک به‌صورت یک‌بار خاک مصرف و دوبار محلول‌پاشی به‌همراه بیوچار توصیه می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effect of biochar and humic acid application on nutrient content and grain yield of chickpea

نویسندگان [English]

  • Hamid Naseri nejad 1
  • Masoumeh Naeemi 1
  • Ali Nakhzari Moghaddam 2
  • Mehdi Zarei 2
1 crop production, College of Agriculture & Natural Resources Gonbad Kavous University
2 Crop Ecology Department of Plant Production College of Agriculture & Natural Resources Gonbad Kavous University Golestan, Iran
چکیده [English]

To investigate the effect of humic acid and biochar application on the quantitative and qualitative characteristics of chickpea (Cicer arietinum L.), a factorial experiment was conducted in a randomized complete block design with three replications at the research farm of Gonbad Kavous University during the 2018-2019 growing season. The factors studied included biochar at two levels (no application and application of 20 tons per hectare) and humic acid at three levels (no application, application with irrigation water at a concentration of 10 kg per hectare, and application with irrigation water along with two foliar applications at a concentration of 250 cc in 100 liters of water). The results showed that the main effects of biochar and humic acid on various traits, including the number of seeds, total plant weight, 100-seed weight, harvest index, grain yield, and levels of nitrogen, protein, potassium, calcium, and magnesium, were significant. Additionally, the interaction effect of these two factors on 100-seed weight, harvest index, and grain yield was significant. The use of humic acid and biochar improved all the traits studied. The highest grain yield (2983 kg.ha-1) was obtained from the treatment of humic acid application once in the soil and twice as foliar spray along with biochar, while the lowest grain yield (1368 kg.ha-1) was related to the treatment without humic acid and biochar application. Moreover, the highest protein and nitrogen content and the concentrations of calcium, potassium, and magnesium were observed in the treatment with humic acid and biochar application. Therefore, for increasing the yield of chickpea, it is recommended to use humic acid once in the soil and twice as foliar spray along with biochar.

کلیدواژه‌ها [English]

  • biochar
  • chickpea
  • grain protein
  • humic acid

Introduction

To investigate the effect of humic acid and biochar on the quantitative and qualitative characteristics of chickpea (Cicer arietinum L.), a factorial experiment was conducted in a randomized complete block design with three replications at the farm of Gonbad Kavous University during the 2018-2019 growing season. The study aimed to assess how different levels of biochar and humic acid applications influence the growth, yield, and nutrient composition of chickpea plants.

Objectives

 The factors studied included biochar at two levels (no application and application of 20 tons per hectare) and humic acid at three levels (no application, application with irrigation water at a concentration of 10 kg per hectare, and application with irrigation water along with two foliar applications at a concentration of 250 cc in 100 liters of water). The main objective was to determine how these treatments affect key agronomic traits such as the number of seeds per plant, total plant weight, 100-seed weight, harvest index, grain yield, and the content of essential nutrients like nitrogen, protein, potassium, calcium, and magnesium.

Materials and Methods

The experimental design was a randomized complete block design with three replications. The biochar was applied at a rate of 20 tons per hectare, while the humic acid was applied in three different ways: no application, application with irrigation water at 10 kg per hectare, and application with irrigation water plus two foliar applications at 250 cc in 100 liters of water. These treatments were aimed at evaluating their individual and combined effects on the growth and nutritional quality of chickpea plants.

Results

The results showed that the main effects of biochar and humic acid were significant on various traits. The application of biochar and humic acid individually improved the number of seeds per plant, total plant weight, 100-seed weight, and harvest index. Specifically, the application of biochar at 20 tons per hectare significantly increased the number of seeds, total plant weight, and 100-seed weight compared to the control. Similarly, humic acid application, especially when combined with both soil and foliar treatments, led to marked improvements in plant growth and grain yield.

The interaction effect of biochar and humic acid was also significant on several traits. The combined application of biochar and humic acid resulted in the highest improvements. The treatment involving humic acid application once in the soil and twice as a foliar spray along with biochar yielded the highest grain yield of 2983 kg/ha. In contrast, the lowest grain yield of 1368 kg/ha was observed in the treatment without any humic acid or biochar application. In terms of nutrient composition, the highest protein and nitrogen content, along with the highest concentrations of calcium, potassium, and magnesium, were recorded in the treatment with both humic acid and biochar. This indicates that these amendments not only enhance growth and yield but also improve the nutritional quality of chickpea plants.

Conclusion

The study concludes that the integrated use of humic acid and biochar is highly effective in enhancing the growth, yield, and nutrient content of chickpea. The recommended practice for achieving optimal results is to apply humic acid once in the soil and twice as a foliar spray in combination with biochar at 20 tons per hectare. This approach can significantly boost chickpea production and improve its nutritional value, making it a valuable strategy for farmers aiming to increase productivity and crop quality. Further research could explore the long-term effects of these amendments and their impact on soil health and sustainability.

Author Contributions

Masoumeh Naeemi and Mehdi Zarei conceived of the presented idea and developed the theory and the computations. Hamid Naseri Nejad and Ali Nakhzari Moghadam carried out the experiment. Masoumeh Naeemi verified analytical methods and performed the computations. Ali Nakhzari Moghadam investigated and supervised the findings of this work. All authors discussed the results and contributed to the final manuscript, but Masoumeh Naeemi wrote the final version of manuscript. All authors have read and agreed to the published version of the manuscript. All authors contributed according their name place to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

Data is available on request from the authors.

 

Acknowledgements

The authors would like to thank the research council of Gonbad Kavous University, Gonbad Kavous, Iran for the financial support of this research.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Ampong, K., Thilakaranthna, M.S. and Gorim, L.Y., 2022. Understanding the role of humic acids on crop performance and soil health. Frontiers in Agronomy, 4, p.848621.
Anaz, N., Morteza, S.D., AmirHossein, S.R., AmirAbbas, M. and Hamid, J., 2021. The response of growth and yield of canola genotypes to humic acid application in different plant densities. Gesunde Pflanzen, 73(1), pp.17-27.
Ayas, H. and Gulser, F. 2005. The effect of sulfur and humic acid on yield components and macronutrient contents of spinach. Journal of Biological Sciences. 5(6): 801-804.
Ayuso, M., Hernandez, T., Garsia, C. and Pascual, G. A. 1996. Stimulation of barley growth and nutrients observation by humic substances organization from various organic materials. Bio Resource Technology. 57: 261-267.
Baghestany, A.A. and Tousi, M., 2023. Study on Market Structure and Global Trade of Chickpea. Iranian Dryland Agronomy Journal, 12(2): 204-215.
Canellas, L.P., Canellas, N.O., da S. Irineu, L.E.S., Olivares, F.L. and Piccolo, A., 2020. Plant chemical priming by humic acids. Chemical and Biological Technologies in Agriculture, 7, pp.1-17.
Chandio, W.A., Pirzada, T., Majid, A. and Rashid, F., 2021. Extraction and characterization of humic acid from agriculture soil and its effect on wheat (Triticum Indicum) seed growth. Journal of Innovation. Science, 7, p.205.
Chen, Q., Qu, Z., Ma, G., Wang, W., Dai, J., Zhang, M., Wei, Z. and Liu, Z., 2022. Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions. Agricultural Water Management, 263, p.107447.
Das, S.K., Ghosh, G.K. and Avasthe, R., 2020. Application of biochar in agriculture and    environment, and its safety issues. Biomass Conversion and Biorefinery, pp.1-11.
Datta, A., Choudhury, M., Sharma, P.C., Jat, H.S., Jat, M.L. and Kar, S., 2022. Stability of humic acid carbon under conservation agriculture practices. Soil and Tillage Research, 216, 105240.
De Castro, T.A.V.T., Berbara, R.L.L., Tavares, O.C.H., da Graca Mello, D.F., Pereira, E.G., de Souza, C.D.C.B., Espinosa, L.M. and García, A.C., 2021. Humic acids induce a eustress state via photosynthesis and nitrogen metabolism leading to a root growth improvement in rice plants. Plant Physiology and Biochemistry, 162, pp.171-184.
De Hita, D., Fuentes, M., Fernández, V., Zamarreño, A.M., Olaetxea, M. and García-Mina, J.M., 2020. Discriminating the short-term action of root and foliar application of humic acids on plant growth: emerging role of jasmonic acid. Frontiers in plant science, 11, p.493.
Dordas, C. and Sioulas, S. 2008. Safflower yield, chlorophyll content, photosynthesis and water efficiency plants. Soil Biology and Biochemistry. 34: 1527–1536.
Dürdane, M.A.R.T., 2022. Chickpea (Cicer arietinum L.): A current review. MAS Journal of Applied Sciences, 7(2), pp.372-379.
El-Hak, S. G., Ahmed, A. and Moustafa, Y. 2012. Effect of foliar application with two antioxidants and humic acid on growth, yield and yield components of peas (Pisum sativum L.). Journal of Horticultural Science and Ornamental Plants, 4(3): 318-328.
Farrell, M., Macdonald, L. M., Butler, G., Chirino-Valle, I. and Condron, L. M. 2014. Biochar and fertilizer applications influence phosphorus fractionation and wheat yield. Biology and Fertility of Soils, 50, 169–178.
Gebremedhin, G. H., Haileselassie, B., Berhe, D. and Belay, T. 2015. Effect of biochar on yield and yield Components of wheat and post-harvest soil properties in Tigray, Ethiopia. Journal of Fertilizers and Pesticides, 6:158-162.
Hosseini, M., Aamani, A. and Najafzadeh, N., 2023. The role of bio-fertilizer in combination with different NPK fertilizer treatments on growth characteristics and yield responses of chicken pea (Cicer arietinum L.). Journal Keteknikan Pertanian Tropis dan Biosistem, 11(2), pp.124-133.
Jones, J.B., 2001. Laboratory guide for conducting soil tests and plant analysis. CRC press.
Kadhim, J.J. and Hamza, J.H., 2021, November. Study of seed soaking and foliar application of ascorbic acid, citric acid and humic acid on growth, yield and active components in maize. In IOP Conference Series: Earth and Environmental Science (Vol. 910, No. 1, p. 012076). IOP Publishing.
Kahraman, A., 2017. Effect of humic acid applications on the yield components in chickpea. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 34(1), pp.218-222.
Kahraman, A., 2020. Managing the humic acid fertilizing of chickpea and protein status. Selcuk Journal of Agriculture and Food Sciences, 34(1), pp.107-110.
Kaur, R. and Prasad, K., 2021. Technological, processing and nutritional aspects of chickpea (Cicer arietinum)-A review. Trends in Food Science & Technology, 109, pp.448-463.
Kaya, M., Atak, M., Khawar, Kh., Ciftei, C. Y. and Ozcan, S. 2005. Effect of pre-sowing seed treatment with zinc and foliar spray of humic acids on yield of Common Bean (Phaseolus vulgaris L.). International journal of agriculture and biology, 7(6), 875-878.
Kjeldahl, J. (1883). A new method for the determination of nitrogen in organic matter. Zeitschrift für Analytische Chemie, 22, 366-382.
Khan, A., Khan, R.U., Khan, S., Khan, M.Z. and Hussain, F., 2020. Effect of plant derived humic substances on the yield of chickpea grown in greenhouse. Pakistan Journal of Agricultural Research, 33(2), pp.321-326.
Lehmann, J., Cowie, A., Masiello, C.A., Kammann, C., Woolf, D., Amonette, J.E., Cayuela, M.L., Camps-Arbestain, M. and Whitman, T., 2021. Biochar in climate change mitigation. Nature Geoscience, 14(12), pp.883-892.
Liu, C. and Cooper, R. J. 2000. Humic substances influence creeping bent grass growth. Golf Course Management, pp. 49-53.
Major, J., Rondon, M., Molina, D., Riha, S. J. and Lehmann, J. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil. 333:117–128.
Mousavi, S.M., Srivastava, A.K., Cheraghi, M., 2022. Soil health and crop response of biochar: an updated analysis. Archives of Agronomy and Soil Science. 69 (7):1085-1110;
Nardi, S., Pizzeghello, D., Muscolo, A. and Vianello, A., 2002. Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, 34 (11): 1527-1536.
Nasiroleslami, E., Mozafari, H., Sadeghi-Shoae, M., Habibi, D. and Sani, B., 2021. Changes in yield, protein, minerals, and fatty acid profile of wheat (Triticum aestivum L.) under fertilizer management involving application of nitrogen, humic acid, and seaweed extract. Journal of Soil Science and Plant Nutrition, 21(4), pp.2642-2651.
Oktem, A.G. and Oktem, A., 2020. Effect of humic acid application methods on yield and some yield characteristics of corn plant (Zea mays L. indentata). Journal of Applied Life Sciences International, 23(11), pp.31-37.
Pandey, G.K. and Mahiwal, S., 2020. Role of potassium in plants (Vol. 49). Cham, Switzerland: Springer.
Pradhan, S., Mackey, H.R., Al-Ansari, T.A. and McKay, G., 2022. Biochar from food waste: a sustainable amendment to reduce water stress and improve the growth of chickpea plants. Biomass Conversion and Biorefinery, 12(10), pp.4549-4562.
Rajkovich, S., Enders A., Hanley, K., Hyland, C., Zimmerman, A. R. and Lehmann, J. 2012. Corn growth and nitrogen nutrition after additions of biochar with varying properties to a temperate soil. Biology and Fertility of Soils,
 48(3): 271-284.
Roudgarnejad, S., Samdeliri, M., Mirkalaei, A.M. and Moghaddam, M.N., 2022. Improving faba bean seed yield, protein and chlorophyll content by foliar application of humic acid. Acta Scientiarum Polonorum Hortorum Cultus, 21(2), pp.115-121.
Schmidt, H.P., Kammann, C., Hagemann, N., Leifeld, J., Bucheli, T.D., Sánchez Monedero, M.A. and Cayuela, M.L., 2021. Biochar in agriculture–A systematic review of 26 global meta‐analyses. GCB Bioenergy, 13(11), pp.1708-1730.
Sheikhi, J., Hosseini, H.M., Etesami, H. and Majidi, A., 2020. Biochar counteracts nitrification inhibitor DMPP–mediated negative effect on spinach (Spinacia oleracea L.) growth. Ecotoxicology and Environmental Safety, 191, p.110243.
Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macedo, J. L. V., Blum, W. E. H. and Zech, W. 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central amazonian upland soil. Plant Soil, 291: 275-290.
Tauqeer, H.M., Turan, V., Farhad, M. and Iqbal, M., 2022. Sustainable agriculture and plant production by virtue of biochar in the era of climate change. In Managing plant production under changing environment (pp. 21-42). Singapore: Springer Nature Singapore.
Wang, D., Chen, X., Tang, Z., Liu, M., Jin, R., Zhang, A. and Zhao, P., 2022. Application of humic acid compound fertilizer for increasing sweet potato yield and improving the soil fertility. Journal of Plant Nutrition, 45(13), pp.1933-1941.
Wang, J., Li, Y., Li, A., Liu, R.H., Gao, X., Li, D., Kou, X. and Xue, Z., 2021 a. Nutritional constituent and health benefits of chickpea (Cicer arietinum L.): A review. Food Research International, 150, p.110790.
Wang, S., Zheng, J., Wang, Y., Yang, Q., Chen, T., Chen, Y., Chi, D., Xia, G., Siddique, K.H. and Wang, T., 2021 b. Photosynthesis, chlorophyll fluorescence, and yield of peanut in response to biochar application. Frontiers in Plant Science, 12, p.650432.
Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J. and Crowley, D. 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems and Environment, 139(4): 469-475.