بررسی پاسخ ریشه ذرت به ترکیبات یونی مختلف با استفاده از توابع کاهش کلان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

2 گروه بیابان‌زدایی، دانشکده کویرشناسی، دانشگاه سمنان، سمنان، ایران

10.22059/ijswr.2025.384928.669833

چکیده

این تحقیق به منظور بررسی تنش شوری ترکیبات یونی کلرورسدیم+کلرورکلسیم و کلرورکلسیم بر وزن ریشه ذرت انجام شد. دو آزمایش گلخانه‌ای به طور موازی مربوط به هر ترکیب یونی در قالب طرح کاملا تصادفی با 4 تکرار انجام شد. سطوح شوری مختلف (0، 61، 126، 252 و 336 کیلوپاسکال) به صورت مشابه در هر دو ترکیب یونی اعمال شدند. بعد از شروع تیمارهای شوری، پتانسیل اسمزی گلدان‌ها ثابت نگه داشته شد. پاسخ ریشه ذرت با استفاده از پارامترهای شوری پتانسیل اسمزی، غلظت یون و قابلیت هدایت الکتریکی محلول خاک بررسی شد و سپس توسط مدل‌های خطی ماس-هافمن و غیرخطی ونگنوختن-هافمن ارزیابی شدند. تنش شوری به طور معنی‌دار وزن ریشه را در هر دو ترکیب یونی تحت تاثیر قرار داد. نتایج تحقیق نشان داد که پاسخ وزن ریشه ذرت به تنش شوری توسط پارامتر پتانسیل اسمزی بهتر از غلظت یون و قابلیت هدایت الکتریکی شرح داده می‌شود. بر اساس پتانسیل اسمزی مقدار حد آستانه شوری ترکیب یونی کلرورسدیم+کلرورکلسیم و ترکیب یونی کلرورکلسیم به ترتیب صفر و 49/2 کیلوپاسکال به دست آمد، که نشان‌دهنده تاثیر نوع یون بر حساسیت ریشه ذرت به تنش شوری می‌باشد. مقادیر وزن ریشه برآورد شده با استفاده از توابع کاهش نشان داد که دقت مدل نمایی ونگنوختن-هافمن در هر دو ترکیب یونی کلرورسدیم+کلرورکلسیم (71/4 (nRMSE = و کلرورکلسیم (69/5nRMSE = ) بالاتر از مدل خطی ماس-هافمن می‌باشد. همچنین کارایی برآورد مدل نمایی با 991/0 EF=  بالاتر از مدل خطی با 98/0  EF=بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of maize root response to different ionic composition using macroscopic reduction functions

نویسندگان [English]

  • Abouzar Bazrafshan 1
  • Mohammad Hosein Mohammadi 1
  • Mahdi Shorafa 1
  • Ali Asghar Zolfaghari 2
1 Department of Soil Science, Faculty of Agricultural Engineering and Technology, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
2 Desertification Department, Faculty of Desert Science, University of Semnan, Semnan, Iran
چکیده [English]

In this study, our aim is to investigate the effect of salinity stress of NaCl+CaCl2 and CaCl2 ionic compositions in maize (Zea Mays L.) root mass. Two parallel greenhouse experiments were conducted in pots in a randomized complete design with 4 replicates. The different salinity levels (0, 61, 126, 252 and 336 kPa) were similarly applied in both ionic compositions. The osmotic potential in pots was kept constant after the treatment initiation. The maize root response was investigated using osmotic potential, ion concentration and electrical conductivity salinity parameters and then were evaluated by linear Maas-Hoffman and non-linear van Genuchten-Hoffman models. The imposed salinity stress significantly affected root mass in both NaCl+CaCl2 and CaCl2 ionic compositions. The results of this study revealed that osmotic potential is a more appropriate parameter than ion concentration and electrical conductivity for maize root response to salinity stress. Based on osmotic potential, the salinity threshold values of NaCl+CaCl2 and CaCl2 ionic compositions were obtained 0 kPa and 2.49 kPa, respectively which implies effect of ion type on sensivity of maize root mass to salinity stress. The estimated root mass values using reduction functions indicated that exponential model of van Genuchten-Hoffman in both NaCl+CaCl2 (nRMSE=4.71) and CaCl2 (nRMSE=5.69) ionic compositions had more accuracy than linear model of Maas-Hoffman. In addition, modeling efficiency of exponential model (EF=0.991) was larger than linear model (EF=0.98).

کلیدواژه‌ها [English]

  • electrical conductivity
  • ion concentration
  • osmotic potential
  • salinity stress

Introduction

     Low precipitation and high evapotranspiration due to the increasing of weather temperature cause drought stress and soil salinization. In order to fill the gap between demand and supply of freshwater, use of marginal waters including urban wastewater, drainage water and saline water is necessary in arid and semi-arid areas. Plant yield is primarily in relation with physiological response to abiotic stresses. Salt stress affect maize yield in two ways including osmotic stress generated by saline solution around roots and ionic effect (ion toxicity) resulting from excessive ion absorption. Plant response to salinity stress depends on the ionic compositions in soil solution, accumulation of ions in plant tissue and climate conditions. The reports by different studies indicate that nonlinear models could provide higher performances than linear models. The main objectives of this research were: (1) investigating maize root mass response to salt stress using different salt compositions (2) evaluating salinity water uptake reduction functions using maize root tissue.

Materials and Methods

     Two parallel experiments were performed in a greenhouse with maize. The average air temperature and relative humidity of greenhouse were 30±10 oC and 30±20 %, respectively. The soil material was collected from the layer of 0-30 cm depth from agricultural field in Abyek area situated in Qazvin province. The soil material was passed through a 4 mm sieve for cultivation and part of the soil samples were passed through a 2-mm sieve for determination of soil physical and chemical properties. The maize (Zea mays, L., var. SC704), was cultivated in pots. Soil texture was determined with the Hydrometer method. The pH and EC were measured in the saturated soil extract. The saline water separately were produced by NaCl+CaCl2 and CaCl2 salt compositions in tap water. Five salinity treatment with osmotic potentials 0, -61, -126, -252 and -336 were provided for each salt composition. As the salinity treatments started, the matric potential in the salinity experiment was kept at −10 kPa, using the hanging water column technique. From the moment that salt water replaced the tap water in the pots, the quantity of drainage water was recorded daily for each pot and the root water uptake was calculated.

Results and discussions

     Salinity of irrigation water significantly affected maize root mass in both NaCl+CaCl2 and CaCl2 salt compositions. Salinity stress differently decreased root mass in both salt compositions due to ion type effect. In both NaCl+CaCl2 and CaCl2 salt compositions, S3 and S4 salinity treatments showed insignificant difference, while S2 salinity treatment showed significant difference with S0, S3 and S4 salinity treatments. However, NaCl+CaCl2 and CaCl2 salt compositions showed significant and insignificant difference between S1 and S2 salinity treatments, respectively. This different is related to beneficial effect of Ca2+ ion in CaCl2 salt composition in mild salinity level (S2). Comparing linear regression models in NaCl+CaCl2 and CaCl2 salt compositions showed that response of root mass to osmotic potential is more relevant than ion concentration and electrical conductivity. On the other hand, evaluating response of root mass to salinity indicated that nonlinear van Genuchten-Hoffman model had lower nRMSE and higher EF than linear Maas-Hoffman model.

Conclusion

     The results indicated that maize root mass influenced by ion type in different salt compositions under similar osmotic potential. Investigation of different salinity parameters showed that osmotic potential is more appropriate parameter relative to ion concentration and electrical conductivity for utilizing in simulation models and irrigation planning in saline condition. In addition, evaluating reduction functions indicated that estimation efficiency of exponential model on measured data was higher than linear model.

Author Contributions

All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

Data available on request from the authors.

Acknowledgements

The authors would like to thank all participants of the present study.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

     The author declares no conflict of interest.

Albasha, R., Mailhol, J. C., & Cheviron, B. (2015). Compensatory uptake functions in empirical macroscopic root water uptake models-experimental and numerical analysis. Agricultural Water Management, 155, 22–29.
Bazrafshan, A., Shorafa, M., Mohammadi, M. H., Zolfaghari, A. A., van der Zee, S., & van de Craats, D. (2020). Comparison of the individual salinity and water deficit stress using water use, yield, and plant parameters in maize. Environmental Monitoring and Assessment, 192:448.
Bazrafshan, A., Shorafa, M., Mohammadi, M. H., & Zolfaghari, A. A. (2019). Maize Response to Salinity Stress using water uptake models in different seasons. Iranian Journal of Soil and Waters Sciences, 50, 2171-2182. (In Persian).
Ben-Gal, A., Borochov-Neori, H., Yermiyahu, U., & Shani, U. (2009). Is osmotic potential a more appropriate property than electrical conductivity for evaluating whole-plant response to salinity? Environmental and Experimental Botany, 65, 232–237.
Bernstein, L. (1975). Effects of salinity and sodicity on plant growth. Annual Review Phytopathology,
13, 295–312.
Chaves, M.M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551–560.
Cramer, G. R. (2002). Sodium–calcium interactions under salinity stress. In: Läuchli, A., Luttge, U. (Eds.), Salinity: Environment, Plants, Molecules. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 205–227.
De Jong van Lier, Q., Van Dam, J. C., & Metselaar, K. (2009). Root water extraction under combined water and osmotic stress. Soil Science Society of America Journal, 73, 862-875.
De Willigen, P., van Dam, J. C., Javaux, M., & Heinen, M. (2012). Root water uptake as simulated by three soil water flow models. Vadose Zone Journal, 11, 811–822.
Gardner,W. R. (1960). Dynamic aspects of water availability to plants. Soil Science. 89: 60-73.
Homaee, M., Feddes, R. A., & Dirksen, C. (2002). A macroscopic water extraction model for non-uniform transient salinity and water stress. Soil Science Society of America Journal, 66, 1764–1772.
Himabindu, Y., Chakradhar, T., Reddy, M. C., Kanygin, A., Redding, K. E., & Chandrasekhar, T. (2016).
 Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environmental and Experimental Botany, 124, 39–63.
Jalali, V., & Kapourchal, S. A. (2020). Assessing four different macroscopic water uptake models for maize plant (Zea mays L.) under salinity stress. Irrigation and Drainage, 70, 70–83.
Kirkham, M. B. (2014). Principles of soil and plant water relations. Cambridge: Academic Press.
Maathuis, F. J. M. (2014). Sodium in plants: perception, signalling, and regulation of sodium fluxes. Journal of Experimental Botany, 65, 849–858.
Maiti, A, & Rogers, R. D. (2011). A correlation-based predictor for pair-association in ionic liquids. Physical Chemistry Chemical Physics, 13, 12138-12145.
Meskini-Vishkaee, F., Mohammadi, M. H., & Neyshabouri, M. R. (2018). Revisiting the wet and dry ends of soil integral water capacity using soil and plant properties. Soil Research, 56, 331-345.
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
Oster, J. D., Letey, J., Vaughan, P., Wu, L., & Qadir, M. (2012). Comparison of transient state models that include salinity and matric stress effects on plant yield. Agricultural Water Management, 103, 167–175.
Rengasamy, P. (2010). Osmotic and ionic effects of various electrolytes on the growth of wheat. Australian Journal of Soil Research, 48, 120–124.
Rhoades, J. D. (1996). Salinity: electrical conductivity and total dissolved solid.P. 417-435. In: sparks, D. L., Helmke, P. A., Leoppet, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. & Summer, M. E. (Eds), Methods of soil analysis. Part 3. Chemical Methods Soil Science Society American Inc. Book series, No. 5, Madison, WI, USDA.
Saadat, S., & Homaee, M. (2015). Modeling sorghum response to irrigation water salinity at early growth stage. Agricultural Water Management, 152, 119-124.
Sarai Tabrizi, M., Babazadeh, H., Homaee, M., Kaveh, F., & Parsinejad, M. (2016). Determining the threshold value of basil yield reduction and evaluation of water uptake models under salinity stress condition. Journal of Water and soil science. 30(1), 30-40. (In Persian)
Seifi, S., Alizadeh, A., Davari, K., & Banayan aval, M. (2015). Evaluation of water uptake functions under simultaneous salinity and water stress conditions in turf grass. Iranian Journal of Irrigation and Drainage, 9(1), 131-142. (In Persian)
Shannon, M. C., & Grieve, C. M. (1999). Tolerance of vegetable crops to salinity. Scientia Horticulturae,
78, 5–38.
Shrivastava, P., & Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22, 123–131.
Skaggs, T. H., van Genuchten, M. T., Shouse, P. J., & Poss J. A. (2006). Macroscopic approaches to root water uptake as a function of water and salinity stress. Agricultural Water Management, 86, 140–149.
Soil Survey Staff. (2014). Soil taxonomy, 12th ed. Washington DC: USDANRCS, Washington DC, USA.
Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., & Mcdonald, G. K. (2011). Additive effects of Na+ and Cl ions on barley growth under salinity stress. Journal of Experimental Botany, 62, 2189–2203.
Vennam, R. R., Bheemanahalli, R., Reddy, K. R., Dhillon, J., Zhang, X., & Adeli, A. (2024).
Early-season maize responses to salt stress: Morpho-physiological, leaf reflectance, and mineral composition. Journal of Agriculture and Food Research, 15, 100994.
Wang, H., Liang, L. Y., Liu, S., An, T. T., Fang, Y., Xu, B. C., Zhang, S. Q., Deng, X. P., Palta, J. A., Siddique, K. H. M., & Chen, Y. L. (2020). Maize genotypes with deep root systems tolerate salt stress better than those with shallow root systems during early growth. Journal of Agronomy and Crop Science, 206, 711–721.
Wang, T., Xu, Y., Zuo, Q., Shi, J., Wu, X., Liu, L., Sheng, J., Jiang, P., & Ben-Gal, A. (2023).
Evaluating and improving soil water and salinity stress response functions for root water uptake. Agricultural Water Management, 287, 108451.
Wu, X., Shi, J., Zuo, Q., Zhang, M., & Ben-Gal, A. (2021). Parameterization of the water stress reduction function based on soil-plant water relations. Irrigation Science, 39, 101–122.
Yang, H, Du, T. S, Mao, X. M, & Shukla, M. K. (2020). Modeling tomato evapotranspiration and yield responses to salinity using different macroscopic reduction functions. Vadose Zone Journal, 10, 1-15.
Zaidi, P. H., Shahid, M., Seetharam, K., & Vinayan, M. T. (2022). Genomic regions associated with salinity stress tolerance in tropical maize (Zea Mays L.). Frontiers in Plant Sciences, 13, 869270
Zhang, X., Yang, H., Shukla, M. K., & Du, T. (2023). Proposing a crop-water-salt production function based on plant response to stem water potential. Agricultural Water Management, 178, 108162
Zhao, K. F., Song, J., Fan, H., Zhou, S., & Zhao, M. (2010). Growth response to ionic and osmotic stress of NaCl in salt-tolerant and salt-sensitive maize. Journal of Integrative Plant Biology, 52, 468–475