عدم قطعیت و نقشه‌برداری مکانی شوری و قلیا بودن خاک با استفاده از روش‌های یادگیری ماشین در سه عمق مدیریتی مختلف در منطقه آبیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش علوم و مهندسی خاک، دانشکده کشاورزی-دانشگاه شهیدباهنر کرمان

2 عضو هیأت علمی گروه مهندسی علوم خاک، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

3 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

10.22059/ijswr.2025.382783.669797

چکیده

شور و سدیمی شدن خاک یکی از مهم‌ترین فرآیندهای مخرب خاک مناطق خشک و نیمه‌خشک می‌باشد. این دو عارضه می‌توانند علاوه بر کاهش میزان باروری خاک‌ها، این اراضی را مستعد تخریب کرده و تهدیدی جدی برای توسعه پایدار منابع باشند. تهیه نقشه‌های پراکنش این ویژگی‌ها در طول خاک‌رخ می‌تواند به مدیریت بهتر این اراضی کمک کند. مطالعه حاضر با هدف بررسی تغییرات شور و سدیمی بودن خاک‌های منطقه خشک و نیمه‌خشک آبیک قزوین اجرا شده است. به منظور آگاهی از نحوه پراکنش سطحی و عمقی این دو ویژگی، سه عمق مهم از نظر کشت محصولات کشاورزی شامل 0-50، 0-100 و 0-150 سانتی‌متر بررسی شدند. مدل‌سازی‌ها بر اساس اطلاعات 281 خاک‌رخ و متغیرهای کمکی محیطی با دقت مکانی 5/12 متر انجام شدند. مدل‌سازی و پیش‌بینی مقادیر هدایت الکتریکی (شوری) و نسبت جذب سدیم (قلیا بودن) بر اساس چهار مدل تعلیم ماشین کوبیست، جنگل تصادفی، شبکه عصبی مصنوعی و گرادیان بوستینگ صورت گرفت که مدل ترکیبی وزن‌دار ساده ترکیب این مدل‌ها به عنوان نقشه‌های نهایی شوری و سدیمی بودن در نظر گرفته شدند. عدم قطعیت مدل‌ از روش بوت‌استرپینگ با 50 تکرار بدست آمد. نتایج نشان داد که پستی و بلندی، اقلیم و پوشش گیاهی اصلی‌ترین عوامل کنترل کننده شوری و قلیا بودن در منطقه می‌باشند. مقدار ضریب تبیین مدل‌های نهایی پیش‌بینی شوری و سدیمی در هر سه عمق مورد بررسی در محدوده 61/0 تا 81/0 بوده و بیانگر کارایی خوب مدل‌ها می‌باشد. بیشترین میزان عدم قطعیت مدل‌ها در قسمت‌های جنوبی منطقه با تغییرات زیاد مقادیر هدایت الکتریکی و نسبت جذب سدیم در فاصله کم، تعداد کمتر مشاهدات خاک، توپوگرافی کم‌تر مشاهده شد که این مقدار برای مدل‌های پیش‌بینی کننده سدیمی بودن در تمامی عمق‌ها نسبت به شوری کم‌تر بود. کارایی مدل‌ها برای هر دو ویژگی با افزایش عمق افزایش یافته است. بیش از 65% منطقه بصورت غیر شور می‌باشد درحالی‌که مناطق بدون قلیا 70% منطقه را پوشش می‌دهند. دستیابی به این نقشه‌ها گامی موثر در بهبود مدیریت بهره‌برداری از اراضی مطابق با استعدادهای آن‌ها می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Uncertainty and Spatial mapping of soil salinity and sodicity using machine learning methods in three different management depths in Abyek region

نویسندگان [English]

  • Azam Jafari 1
  • Fereydoon Sarmadian 2
  • Zahra Rasaei 3
1 Soil Science Department, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
2 soil science department< faculty of agricultural engineering and technology, university of Tehran
3 Soil Science Department, Faculty of Agricultural, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

Soil salinity and sodicity are affecting soils in arid and semi-arid regions, reducing soil fertility and leading to land degradation, posing threats to the sustainable development of resources. Creating maps of these soil variables throughout soil profile is crucial for effective land management. This study aims to investigate the spatial variability of soil salinity and sodicity in a part of the arid and semi-arid region of Abyek. Three critical depths for the cultivation of important agricultural products (0-50, 0-100, and 0-150 cm) were examined. The models were conducted using 281 soil data and environmental covariates. The modeling and prediction of soil electrical conductivity (salinity) and sodium absorption ratio (sodicity) were performed using four machine learning models: Cubist, random forest, artificial neural network, and XGBoost. The final maps were derived from a simple weighted ensemble model. The model uncertainty was assessed using bootstrapping with 50 repetitions. The results indicated high spatial variability of EC and SAR (exceeding 35%), with an increase from north to south of the region and from surface to deeper soil layers. Results showed that topography, climate, and vegetation are primary controlling factors of spatial distribution of soil salinity and alkalinity. R² for the final models predicting both EC and SAR across all three depths ranged from 0.61 to 0.81, demonstrating the models’ high efficiency, increasing with depth. The highest level of model uncertainty was observed in the southern parts of the region with high variability in EC and SAR values in short distances, fewer soil observations, and less topography, which was lower for models predicting sodium content at all depths compared to salinity. More than 65% of the area was non-saline, while non-alkaline areas covered 70% of it. Acquiring these maps represents a significant step towards improving land management practices based on the land’s potential.

کلیدواژه‌ها [English]

  • Spatial distribution
  • salinity and alkalinity
  • bootstrapping
  • digital soil mapping 

 

Introduction

Soil salinity and sodicity are critical environmental issues that pose significant challenges to sustainable agricultural development and global food security. These phenomena represent the primary soil degradation processes in arid and semi-arid regions, which encompass approximately 20% of Iran's land and are expanding at an increasing rate. Creating maps of these soil variables throughout soil profile is crucial for effective land management. Digital Soil Mapping (DSM) is a powerful tool in this context and has been globally employed to predict the spatial distribution of soil salinity and sodicity. Given the vertical variations of these characteristics along the soil profile due to the accumulation of salts at different depths and their impact on the growth of plant species with superficial, semi-deep, and deep roots, this study aims to investigate the changes in salinity and sodicity of soils in the arid and semi-arid region of Abyek at three management depths: 0-50 cm, 0-100 cm, and 0-150 cm.

Materials and Methods

To achieve the objectives of this study, electrical conductivity (EC) and sodium absorption ratio (SAR) data from different layers of 281 soil profiles were utilized to model and predict soil salinity and sodicity, respectively. The values of these two properties were averaged using vertical weighted interpolation functions at three depths: 0-50 cm, 0-100 cm, and 0-150 cm. Considering the conditions of the study area and based on expert opinion, nine environmental covariates with a spatial resolution of 12.5 meters were used as representatives of the scorpan factors for modeling and spatial prediction of these two soil properties. The modeling was conducted using different machine learning (ML) models including cubist, random forest, artificial neural network, gradient boosting, and their simple weighted combination. The models were evaluated using common indicators, including the coefficient of determination (R²), root mean square error (RMSE), and Lin's concordance correlation coefficient (LCCC), and their uncertainty was assessed based on the bootstrapping method with 50 replicates.

Results and Discussion

The results indicated high spatial variability of EC and SAR (exceeding 35%), with an increase from north to south of the region and from surface to deeper soil layers. This can be attributed to the substantial variations in climate, soil characteristics, and differing management practices. Additionally, the investigations showed that topography, climate, and vegetation are primary controlling factors of spatial distribution of soil salinity and alkalinity. R² for the final models predicting both EC and SAR across all three depths ranged from 0.61 to 0.81, demonstrating the models’ high efficiency, increasing with depth. The highest level of model uncertainty was observed in the southern parts of the region with high variability in EC and SAR values in short distances, fewer soil observations, and less topography, which was lower for models predicting sodium content at all depths compared to salinity. More than 65% of the area was non-saline, while non-alkaline areas covered 70% of it.

Conclusion

In general, the findings of this study validate the use of digital soil mapping methods, particularly the combination of different models, as an effective approach for creating accurate maps of soil salinity and sodicity in the arid and semi-arid regions of Abyek. Acquiring these maps represents a significant step towards improving land management practices based on the land’s potential. The results, presented as soil salinity and sodicity maps along with their uncertainty maps can serve as valuable guides for managers, soil and water experts, and land users in future land use planning. Additionally, this information can be utilized for soil conservation, especially in the southern parts of the region. Finally, the method employed in this study can be applied to other arid and semi-arid regions of the country that face issues of soil salinization and alkalinization.

Author Contributions

Conceptualization, A.J., F.S. and Z.R.; methodology, A.J., and Z.R.; software, A.J.; validation, A.J., and Z.R.; formal analysis, A.J.; investigation, A.J., F.S. and Z.R.; resources, A.J. and F.S.; data curation, F.S.; writing—original draft preparation, A.J.; writing—review and editing, A.J., F.S. and Z.R.; visualization, A.J., F.S. and Z.R.; supervision, F.S.; project administration, F.S.. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Not applicable.

 

Acknowledgements

The authors would like to thank the University of Tehran for support of the present study.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

 

 

Abdel-Kader, F.H. (2011). Digital soil mapping at pilot sites in the northwest coast of Egypt: a multinomial logistic regression approach. The Egyptian Journal of Remote Sensing and Space Science. 14, 29–40.
Adeniyi, O.D., Bature, H., & Mearker, M. (2024). A Systematic Review on Digital Soil Mapping Approaches in Lowland Areas. Land, 13(3), 379.
Agaba, S., Ferré, C., Musetti, M., & Comolli, R. (2024). Mapping Soil Organic Carbon Stock and Uncertainties in an Alpine Valley (Northern Italy) Using Machine Learning Models. Land, 13(1), 78.
Aksoy, S., Sertel, E., Roscher, R., Tanik, A., & Hamzehpour, N. (2024). Assessment of soil salinity using explainable machine learning methods and Landsat 8 images. International Journal of Applied Earth Observation and Geoinformation, 130, 103879.
Allbed, A., & Kumar, L. (2013). Soil Salinity Mapping and Monitoring in Arid and Semi-Arid Regions Using Remote Sensing Technology: A Review. Advances in Remote Sensing, 02, 373–385.
Beaudette, D. E., Roudier, P., & O’Geen, A. T. (2023). Algorithms for quantitative pedology: A toolkit for soil scientists. Computers and Geosciences, 52, 258–268.
Bogaert, P., Taghizadeh-Mehrjardi, R., & Hamzehpour, N. (2023). Model averaging of machine learning algorithms for digital soil mapping: A minimum variance framework. Geoderma, 437, 116604.
Brunner, P. H. T. L., Li, H. T., Kinzelbach, W., & Li, W. P. (2007). Generating soil electrical conductivity maps at regional level by integrating measurements on the ground and remote sensing data. International Journal of Remote Sensing, 28(15), 3341-3361.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., & Böhner, J. (2015). System for automated geoscientific analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8(7), 1991-2007.
Daempanah, R., Haghnia, Gh.H., Alizadeh, A. & Karimi, A.R. (2011). Mapping Salinity and Sodicity of Surface Soil by Remote Sensing and Geostatistic Methods in South Side of Mah Valat County. Journal of Water and Soil, 25(3), 498-508. (In Persian)
FAO., (2023). GSASmap | Global Soil Partnership | Food and Agriculture Organization of the United Nations. https://www.fao.org/global-soil-par tnership/gsasmap/en
Fathizad, H., Hakimzadeh Ardakani, M.A., Sodaiezadeh, H., Kerry, R., & Taghizadeh-Mehrjardi, R. (2020). Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran. Geoderma, 365, 114233.
Gallant, J.C., & Dowling, T.I. (2003). A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resource Research, 39, 1347–1359.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202, 18-27.
Habibi, V., Ahmadi, H., Jafari, M., & Moeini, A. (2021). Mapping soil salinity using a combined spectral and topographical index with artificial neural network. PLoS One, 16(5), e0228494.
Jafari, A., Finke, P. A., Wauw, J. V., Ayoubi, S., & Khademi, H. (2012). Spatial prediction of USDA great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types. European Journal of Soil Science, 63, 284-298.
Khamoshi, S.E., Sarmadian, F., & Omid, M. (2024). Land suitability evaluation using traditional and machine learning approaches: a case study in abiek plain, Qazvin province, Iran. Iranian Journal of Soil and Water Research, 55(2), 269-283. (In Persian)
Kilic, K., & Kilic, S. (2007). Spatial variability of salinity and alkalinity of a field having salination risk in semi-arid climate in northern Turkey. Environmental Monitoring and Assessment, 127, 55–65.
Krivoruchko, K., & Gribov, A. (2019). Evaluation of empirical Bayesian kriging. Spatial Statistics, 32, 100368.
Kuhn, M. (2008). Caret package. Journal of statistical software, 28(5), 1-26.
Liu, Y., Han, X., Zhu, Y., Li, H., Qian, Y., Wang, K., & Ye, M. (2024). Spatial mapping and driving factor Identification for salt-affected soils at continental scale using Machine learning methods. Journal of Hydrology, 639, 131589.
Malone, B. (2016). Ithir: Functions and algorithms specific to pedometrics. R Package Version, 1, r126.
Malone, B. P., McBratney, A. B., Minasny, B., & Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1), 138–152.
Malone, B. P., Minasny, B., Odgers, N. P., & McBratney, A. B. (2014). Using model averaging to combine soil property rasters from legacy soil maps and from point data. Geoderma, 232, 34-44.
Malone, B.P., Minasny, B., McBratney, A.B. (2018). Using R for digital soil mapping (Vol. 35). Cham, Switzerland: Springer International Publishing.
McBratney, A.B., Mendonça Santos, M.L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117, 3–52.
McBride, G. B. (2005). A proposal for strength-of-agreement criteria for Lin’s concordance correlation.
Mohammadifar, A., Gholami, H., Golzari, S., & Collins, A. L. (2021). Spatial modelling of soil salinity: deep or shallow learning models? Environmental Science and Pollution Research, 1-19.
Mousavi, S.R., Sarmadian, F., Omid, M., & Bogaert, P. (2021). Digital Modeling of Three-Dimensional Soil Salinity Variation Using Machine Learning Algorithms in Arid and Semi-Arid lands of Qazvin Plain. Iranian Journal of Soil and Water Research, 52(7), 1915-1929. (In Persian)
Mousavi, S.R., Sarmadian, F., Omid, M., & Bogaert, P. (2022). Three-dimensional mapping of soil organic carbon using soil and environmental covariates in an arid and semi-arid region of Iran. Measurement, 201, 111706.
Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P.C., & Bolan, N.S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736.
Nabiollahi, K., Taghizadeh-Mehrjardi, R., Shahabi, A., Heung, B., Amirian-Chakan, A., Davari, M., & Scholten, T. (2021). Assessing agricultural salt-affected land using digital soil mapping and hybridized random forests. Geoderma, 385, 114858.
Naimi, S., Ayoubi, S., Zeraatpisheh, M., & Dematte, J.A.M. (2021). Ground observations and environmental covariates integration for mapping of soil salinity: a machine learning-based approach. Remote Sensing, 13(23), 4825.
Nield, S.J., Boettnger, J.L., & Ramsey, R.D. (2007). Digital mapping gypsic and nitric soil areas using Landsat ETM data. Soil Science Society of America Journal, 71, 245–252.
Omrani, M., Shahbazi, F., Feizizadeh, B., Oustan, S., & Najafi, N. (2021). Application of remote sensing indices to digital soil salt composition and ionic strength mapping in the east shore of Urmia Lake, Iran. Remote Sensing Applications: Society and Environment, 22, 100498.
Qadir, M., Qureshi, A.S., & Cheraghi, A.M. (2008). Extent and characterization of salt affected soils in Iran and strategies for their amelioration and management. Land Degrad. Dev. 19, 214–224.
R Development Core Team. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna Austria.
Rahmani, A., Sarmadian, F., & Arefi, H. (2023). Digital modeling and prediction of soil subgroup classes using deep learning approach in a part of arid and semi-arid lands of Qazvin Plain. Iranian Journal of Soil and Water Research, 53 (11), 2477-2499. (In Persian)
Rasouli, L., Nabiollahi, K., & Taghizade-Mehrjardi, R. (2020). Digital mapping of soil quality index (Case study: Ghorveh, Kurdistan Province). Journal of Soil Management and Sustainable Production. 10(1), 101-118. (In Persian)
Rezaie, G., Sarmadian, F., Mohammadi Torkashvand, A., Seyedmohammadi, J., & Marashi Aliabadi, M. (2023). Digital Mapping of Surface and Subsurface Soil Organic Carbon and Soil Salinity Variation in a Part of Qazvin Plain (Case Study: Abyek and Nazarabad Regions). Journal of Water and Soil. 37(2), 315-331. (In Persian)
Richards, L.A. (1954). Diagnosis and improvement of saline and alkali soils. Agricultural Handbook No. 60. U.S. Salinity Laboratory Riverside, California.
Richardson, A.J., & Wiegand, C.L. (1977). Distinguishing vegetation from soil background information. Photogrammetric engineering and remote sensing, 43(12), 1541-1552.
Roozitalab, M.H., Siadat, H., & Farshad, A. (Eds.). (2018). The soils of Iran. Switzerland: Springer international publishing.
Schoeneberger, P.J., Wysocki, D.A. & Benham, E.C. (2012) Soil Survey Staff. Field book for describing and sampling soils, 3nd version. Natural Resources Conservation Service. National Soil Survey Center, Lincoln.
Shahrayini, E., & Noroozi, A. A. (2021). Modeling and Mapping of Soil Salinity and Alkalinity Using Remote Sensing Data and Topographic Factors.
Soil survey manual. (2018). Soil Science Division Staff. United States Department of Agriculture Handbook No. 18.
Soil Survey Staff. (2017). Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/ . Accessed 04/24/2017.
Soil Survey Staff. (2022). Keys to Soil Taxonomy. 13th ed. USDA-Natural Resources Conservation Service, Washington DC.
Sparks, D.L. (1996). Methods of Soil Analysis. Part. 3: Chemical Methods; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, ISBN 978-0-89118-825-4.
Suarez, D.L. (1981). Relation between pHc and sodium adsorption ratio (SAR) and an alternative method of estimating SAR of soil or drainage waters. Soil Science Society of American Journal, 45 (3), 469–475
Sultan, M.T., Mahmud, U., & Khan, M.Z. (2023). Addressing soil salinity for sustainable agriculture and food security: Innovations and challenges in coastal regions of Bangladesh. Future Foods, 100260.
Taghizadeh-Mehrjardi, R., Ayoubi, S., Namazi, Z., Malone, B. P., Zolfaghari, A. A., & Sadrabadi, F. R. (2016). Prediction of soil surface salinity in arid region of central Iran using auxiliary variables and genetic programming. Arid Land Research and Management, 30(1), 49-64.
Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., & Malone, B.P. (2014). Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 213, 15-28.
Taylor, K.E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysics Research. 106: 7183–7192.
Viscarra Rossel, R.A. & McBratney, A.B. (2009). Diffuse Reflectance Spectroscopy as a Tool for Digital Soil Mapping. In: Hartemink, A.E., McBratney, A., Mendonça-Santos, M.d. (eds) Digital Soil Mapping with Limited Data. Springer, Dordrecht.
Wallach, D., Makowski, D., Jones, J.W., & Brun, F. (2006). Working with dynamic crop models: evaluation, analysis, parameterization, and applications. Elsevier.
Wang, J., Ding, J., Yu, D., Teng, D., He, B., Chen, X., ... & Su, F. (2020). Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Science of the Total Environment, 707, 136092.
Wang, J., Peng, J., Li, H., Yin, C., Liu, W., Wang, T., & Zhang, H. (2021). Soil salinity mapping using machine learning algorithms with the Sentinel-2 MSI in arid areas, China. Remote Sensing, 13(2), 305.
Wang, N., Chen, S., Huang, J., Frappart, F., Taghizadeh, R., Zhang, X., ..., Shi, Z., (2024). Global Soil Salinity Estimation at 10 m Using Multi-Source Remote Sensing. Journal of Remote Sensing, 4, 0130.
Wilding, L.P. (1985). Spatial variability: its documentation, accommodation and implication to soil survey. In D.R. Nielsen, J. Bouma (Eds.), Soil Spatial Variability (pp. 166-189). Pudoc.
Wu, H., & Levinson, D. (2021). The ensemble approach to forecasting: A review and synthesis. Transportation Research Part C: Emerging Technologies, 132, 103357.
Yu, H., Liu, M., Du, B., Wang, Z., Hu, L., & Zhang, B. (2018). Mapping soil salinity/sodicity by using Landsat OLI imagery and PLSR algorithm over semiarid West Jilin Province, China. Sensors, 18(4), 1048.
Zhang, T. T., Zeng, S. L., Gao, Y., Ouyang, Z. T., Li, B., Fang, C. M., & Zhao, B. (2011). Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecological Indicators, 11(6), 1552-1562.