ارزیابی توزیع افقی و عمودی فسفر در خاک زراعی اطراف ریشه گیاه ذرت به شیوه کودآبیاری در سیستم قطره‌ای تیپ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 - بخش تحقیقات شوری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان بوشهر. سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

10.22059/ijswr.2025.385191.669832

چکیده

فراهمی و استفاده کارآمدتر از فسفر به عنوان یکی از عناصر پرمصرف خاک در تولیدات زراعی، با استفاده از سیستم کودآبیاری مستلزم تعیین دقیق مقدار کاربرد و درک حرکت و توزیع فسفر در خاک اطراف گیاه می‌باشد. پژوهش حاضر به منظور دستیابی به اهداف ارزیابی توزیع فسفر محلول (SSP) و قابل استفاده  (SAP) در خاک زراعی (آهکی) تحت کشت گیاه ذرت و خاک بدون گیاه، در دو دوره کودآبیاری در طول زمان‌های مختلف، در مزرعه موسسه تحقیقات خاک و آب (کرج) انجام شد. پس از آماده‌سازی زمین، کشت ذرت به‌صورت نواری و تک ردیفه با فواصل ردیف‌ها و گیاهان از یکدیگر به ترتیب 60 و 15 سانتی‌متر انجام شد. پس از تزریق کودآبیاری کود فسفره در هر دو دوره، نمونه‌بردرای از خاک بدون گیاه ذرت و خاک تحت کشت ذرت در فواصل 5 و 10 سانتی‌متر از محل تزریق به طور افقی و در هر فاصله از عمق‌های 5 - 0، 10 - 5، 15 - 10، 20 – 15 ، 30- 20 و 40 -30 سانتی‌متر با اوگر در در فواصل زمانی 4، 24، 98 و 960 ساعت با دو تکرار گیاه (دو بوته گیاه) انجام شد. سپس نمونه‌ها به منظور تجزیه شیمیایی به آزمایشگاه منتقل و برخی ویژگی‌های فیزیکی و شیمیایی نمونه‌های خاک (سه تکرار آزمایشگاهی) با روش‌های معمول اندازه‌گیری شدند. نتایج نشان داد: کودآبیاری، عمق و زمان بر توزیعSSP و SAP به طور منظم و نامنظم تاثیر‌گذار می‌باشد. نتایج تجزیه واریانس نشان داد اثر ساده تیمار دوره کودآبیاری بر SSP و SAP تحت کشت ذرت در فاصله 5 و 10 سانتی‌متر از محل تزریق کود، تأثیر معنی‌‌داری (در سطوح آمـاری یـک درصد) داشت که حاکی از حرکت حدود 10 سانتی‌متری فسفر در این سیستم بود. با افزایش عمق، مقادیر میانگینSSP و SAP روند کاهشی را نشان داد. حداکثر میانگین غلظت در همه تیمارها در زمان 98 ساعت پس از تزریق کود مشاهده شد که نشان دهنده محدوه زمانی مناسب در فراهمی آسان فسفر می‌باشد. به طور کلی به دلیل خواص منحصر به فرد فسفر در خاک مانند حلالیت کم، تحرک کم و تثبیت زیاد توسط ماتریکس خاک و در دسترس بودن فسفر برای گیاهان، بهتر است کودهای فسفری به صورت محلول و در فاصله حدود 5 سانتی­متر گیاه زراعی و در تقسیط‌های بیشتری تزریق شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessing the horizontal and vertical distribution of phosphorus in agricultural soil around maize root using a fertigation method in surface drip irrigation

نویسندگان [English]

  • Meisam Rezaei 1
  • somayeh dehghani 2
  • KAMBIZ BAZARGAN 1
  • KARIM SHAHBAZI 1
1 Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
2 Salinity Research Department, Bushehr Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tehran,, Iran
چکیده [English]

The availability and efficient utilization of phosphorus, an essential nutrient in agricultural production, through fertigation systems requires precise determination of application rates and an understanding of phosphorus movement and distribution in the soil layers surrounding crops. This study aimed to evaluate the distribution of soluble phosphorus (SSP) and available phosphorus (SAP) in agricultural soil under maize cultivation and in bare soil during two fertigation cycles over various time periods at the Soil and Water Research Institute (Karaj). After tillage, maize was planted using a strip and single-row method, with row and plant spacings of 60 cm and 15 cm, respectively. Following fertigation in both cycles, using micro auger soil samples were collected from both bare soil and soil under maize at horizontal distances of 5 and 10 cm from the dripper and at depths of 0-5, 5-10, 10-15, 15-20, 20-30, and 30-40 cm at time intervals of 4, 24, 98, and 960 hours, with two plant replications (two sides of each plants). The samples were subsequently transferred to the laboratory for chemical analysis using conventional measurement methods. The results indicated that fertigation, depth, and time significantly affected the distribution of SSP and SAP in both systematic and non-systematic manners. The analysis of variance revealed that the effect of the fertigation cycle treatment on SSP and SAP under maize cultivation at 5 and 10 cm from the fertilizer injection site was significant (at the 1% statistical level), demonstrating a phosphorus movement of approximately 10 cm within this system. As the depth increased, the average SSP and SAP values exhibited a decreasing trend. The maximum average concentration across all treatments was observed 98 hours after fertilizer injection, indicating an optimal time range for easily accessible phosphorus availability. Overall, due to the unique properties of phosphorus in soil—such as low solubility, low mobility, and high stabilization/fixation by the soil matrix—along with its availability for plants, it is preferable to apply phosphorus fertilizers in a soluble form, approximately 5 centimeters away from the crop, and in more frequent applications.

کلیدواژه‌ها [English]

  • Soluble phosphorus
  • Available phosphorus
  • Maize
  • Fertigation
  • and Drip irrigation

Background and aim

The agricultural sector faces numerous challenges concerning the utilization of water and mineral resources for crop production and food security. Classic methods of phosphorus fertilization have demonstrated limitations in phosphorus absorption and efficiency of use. The emergence of new technologies, particularly drip fertigation, has facilitated greater solubility and efficiency in phosphorus utilization. The amount of water and fertilizer used, as well as their timing in drip irrigation systems, are critical issues that require optimization. Recently, phosphorus drip fertilization has been proposed as an efficient agricultural practice to enhance phosphorus use efficiency by crops, as it delivers nutrients at the right time and place for plant uptake. This research examines the movement of phosphorus in the soil while gaining a proper understanding of the conditions of drip fertigation, including timing and soil depth, with the aim of achieving increased productivity per unit area to meet nutritional needs and optimize irrigation and fertilization techniques effectively.

Methodology

The present study aimed to assess the distribution of soluble phosphorus (SSP) and available phosphorus (SAP) in agricultural soil under maize cultivation and in bare soil, during two fertigation cycles over different time periods, at the Soil and Water Research Institute (Karaj). Following land preparation, maize was planted in strip and single-row arrangements, with row and plant spacing sets at 60 cm and 15 cm, respectively. After injecting the fertigation solution during the both cycles, soil samples were collected from both bare soil and soil under maize at horizontal distances of 5 and 10 cm from the plant, and at various depths of 0-5, 5-10, 10-15, 15-20, 20-30, and 30-40 cm. Sampling was conducted at time intervals of 4, 24, 98, and 960 hours, with two plant replications (two plants each) for laboratory analysis. The samples were then transported to the laboratory for chemical analysis using conventional measurement methods.

Findings

The results of the simple effect of fertigation on the traits indicated that the average SSP and SAP during the second fertigation cycle were significantly higher than those in the first cycle. Conversely, the average SSP and SAP values in bare soil conditions were found to be higher compared to those under maize cultivation. Overall, from the 0 to 5 cm depth, the average values of SSP and SAP decreased as the depth increased. However, no significant differences were observed between the depths of 10, 20, and 30 cm (with vertical movement around 10 cm). The influence of time on phosphorus concentration shows that with the passage of time, an increasing trend began 4 hours after the fertigation injection, with the maximum average observed in all treatments at 98h after fertigation, after which it reached the minimum average at 960 hours. Based on the interaction effects of fertigation and depth (F*D), the highest SSP values in bare soil and under maize cultivation were recorded at L5 and L10, corresponding to F2D1, while the lowest values were associated with F1D6. Soluble and available phosphorus in bare soil was measured with a higher average compared to the soil under maize cultivation. Additionally, according to the results of the mean comparisons, phosphorus values decreased with increasing depth during both fertigation cycles, reaching a minimum at deeper layers. Given that the simple effect of time indicates that initially, after the fertigation injection, phosphorus concentrations gradually increased due to interactions and distribution in the soil during the early hours, and peaked at 98 hours, subsequent factors such as leaching, plant uptake, soil interactions, and transformation of phosphorus forms into non-available forms contributed to the observed reduction.

Conclusion

In this research, a general overview of the availability, movement of phosphorus in drip fertigation, and its distribution at various depths and times has been reported. We believe that the fundamental topics and practical recommendations regarding the management of phosphorus drip fertigation presented in this research paper, including the distribution of fertilization in more frequent intervals and considering the maximum movement of phosphorus up to a limit of 10 cm vertically, horizontally, and laterally, will be of interest to researchers in the agricultural field, farmers, and industries for improving the efficiency of water and phosphorus fertilizer application under drip fertigation regimes.

Author Contributions

The study was conceptualized by Meisam Rezaei, Kambiz Bazargan and Karim Shahbazi who also provided oversight for project administration and funding acquisition. The methodology was developed by Meisam Rezaei, while the software utilized for data analysis was also implemented by Meisam Rezaei and Somayeh Dehghani. Validation of the findings involved all authors ensuring the robustness of the results. The formal analysis and investigation were conducted by Meisam Rezaei, who also managed the resources and data curation essential for the research. The original draft of the manuscript was prepared by Meisam Rezaei and Somayeh Dehghani, followed by comprehensive writing—review and editing conducted by all authors. Visualization of the data was performed by Somayeh Dehghani. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgements

This work was part of the project titled "Assessing and Modeling the Distribution and Dynamics of Phosphorus and Potassium in Maize and Potato Cultivated Under Drip Irrigation," funded by the Iranian National Elites Foundation and the Soil and Water Research Institute of Iran (SWRI). The authors express their gratitude to all study participants for their contributions and to the SWRI laboratory staff for their invaluable technical support.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The authors declare no conflict of interest.

Badr, M. A., Abou Hussein, S. D., El-Tohamy, W. A., & Gruda, N. (2010). Nutrient uptake and yield of tomato under various methods of fertilizer application and levels of fertigation in arid lands. Gesunde Pflanzen, 62(1), 11-19.
Ben-Gal, A., & Dudley, L. M. (2003). Phosphorus availability under continuous point source irrigation. Soil Science Society of America Journal67(5), 1449-1456.
Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal54(5), 464-465.
Campos, H., Cooper, M., Habben, J. E., Edmeades, G. O., & Schussler, J. R. (2004). Improving drought tolerance in maize: a view from industry. Field crops research, 90(1), 19-34.
Chen, Q., Qu, Z., Ma, G., Wang, W., Dai, J., Zhang, M., ... & Liu, Z. (2022). Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions. Agricultural Water Management263, 107447.
Cheng, S., Ke, G., Li, Z., Cheng, Y., & Wu, H. (2021). Soil Available Phosphorus Investigated for Spatial Distribution and Effect Indicators Resulting from Ecological Construction on the Loess Plateau, China. Sustainability13(22), 12572.
Chtouki, M., Naciri, R., & Oukarroum, A. (2024). A review on phosphorus drip fertigation in the Mediterranean region: Fundamentals, current situation, challenges, and perspectives. Heliyon.
Chtouki, M., Naciri, R., Garré, S., Nguyen, F., Zeroual, Y., & Oukarroum, A. (2022). Phosphorus fertilizer form and application frequency affect soil P availability, chickpea yield, and P use efficiency under drip fertigation. Journal of Plant Nutrition and Soil Science, 185(5), 603-611.
Çimrin, K. M. (2020). Relationship between some soil characteristics and contribution on available phosphorus of inorganic phosphorus fractions in calcareous soils. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi25(2), 138-144.
Cui, Z., Zhang, H., Chen, X., Zhang, C., Ma, W., Huang, C., & Dou, Z. (2018). Pursuing sustainable productivity with millions of smallholder farmers. Nature, 555(7696), 363-366.
Famiglietti, J. S., Rudnicki, J. W., & Rodell, M. (1998). Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. Journal of hydrology210(1-4), 259-281.
Gao, X., Zhao, X., Wu, P., Yang, M., Ye, M., Tian, L., ... & Siddique, K. H. (2021). The economic–environmental trade-off of growing apple trees in the drylands of China: A conceptual framework for sustainable intensification. Journal of Cleaner Production296, 126497.
Gheibi, M., Tehrani, M. M., & Asadi, F. (2014). Guidelines for Integrated Management of Soil Fertility and Corn Nutrition: Technical Promotional Instructions. Soil and Water Research Institute. 56 pp. In Persian.
Guo, Y., Wang, Z., & Li, J. (2023). Coupling effects of phosphate fertilizer type and drip fertigation strategy on soil nutrient distribution, maize yield and nutrient uptake. Agricultural Water Management, 290, 108602.
Islami, M., Hamidi, N., Abadi Khah, D., &  Heydari Salehabad, M. (2018). Challenges of Vertical Movement of Phosphorus (Phosphate Fertilizer) in Soil. In: Proceedings of the Second National Conference on Pistachio in Iran, Vali-e-Asr University of Rafsanjan, 101-102. In Persian.
Keshavarz, P., & Moshiri, F. (2023). Management of phosphorus fertigation in calcareous soils. Publication No. 633. Technical Promotional Instructions. Soil and Water Research Institute. 29 pp. In Persian.
Khan, A., Tan, D. K. Y., Munsif, F., Afridi, M. Z., Shah, F., Wei, F., ... & Zhou, R. (2017). Nitrogen nutrition in cotton and control strategies for greenhouse gas emissions: a review. Environmental Science and Pollution Research24, 23471-23487.
Li, J., Xu, X., Lin, G., Wang, Y., Liu, Y., Zhang, M., ... & Zhang, Y. (2018). Micro-irrigation improves grain yield and resource use efficiency by co-locating the roots and N-fertilizer distribution of winter wheat in the North China Plain. Science of the total environment643, 367-377.
Li, Y., Liu, X., Fang, H., Shi, L., Yue, X., & Yang, Q. (2021). Exploring the coupling mode of irrigation method and fertilization rate for improving growth and water-fertilizer use efficiency of young mango tree. Scientia Horticulturae286, 110211.
Marschner, H. (1995). Mineral nutrition of higher plants 2nd edn. Institute of Plant Nutrition University of Hohenheim: Germany.
McLean, E. O. 1988. Soil pH and lime requirement. In: Page, A. L. (Ed.), Methods of Soil Analysis. Part, American Society of Agronomy, Soil Science Society of America, Madison, Wis., Pp. 199-224.
Neumann, G., & Römheld, V. (2002). Root-induced changes in the availability of nutrients in the rhizosphere.In Y Waisel, A Eshel, U Kafkafi, eds, Plant Roots, The Hidden Half, Ed 3. Marcel Dekker, Inc., New York, pp.617–649.
Owens, P. N., Deeks, L. K., Wood, G. A., Betson, M. J., Lord, E. I., & Davison, P. S. (2008). Variations in the depth distribution of phosphorus in soil profiles and implications for model-based catchment-scale predictions of phosphorus delivery to surface waters. Journal of Hydrology350(3-4), 317-328.
Qu, Z., Chen, Q., Yin, S., Feng, H., Liu, Y., & Li, C. (2024). Effects of drip irrigation coupled with controlled release potassium fertilizer on maize growth and soil properties. Agricultural Water Management, 301, 108948.
Rafiee, H., Zarabi, M., & Mahdavi, S. (2022). Investigating phosphorus distribution and availability in the presence of organic matter and elemental sulfur along with thiobacillus bacteria in two soils with different textures. Iranian Journal of Water and Soil Research, 53 (1), 2625-2641. In Persian.
Richardson, A. E., Barea, J. M., McNeill, A. M., & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms.
Shalmany, M. A., Saghafi, N. A., & Khorasani, A. (2003). Utilization of phosphorus-32 radioisotope to investigate the distribution of phosphate fertilizer in soil and different parts of tomato plants under drip fertilizer irrigation system. Iranian Journal of Agricultural Sciences, 34 (4), 935-947. In Persian.
Sharma, K., Sharma, J. C., Sharma, S., Sharma, N., Sharma, R., Ananthakrishnan, S., & Abd_Allah, E. F. (2024). Optimizing leaf nutrient status, growth, and yield parameters in high-density apple orchards (cv. Super chief) via integrated drip irrigation and fertigation techniques. Heliyon10(16).
Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X. & Zhang, F. (2011). Phosphorus dynamics: from soil to plant. Plant physiology156(3), 997-1005.Tao, R., Wakelin, S. A., Liang, Y., Hu, B., & Chu, G. (2018). Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers. Science of the Total Environment, 612, 739-749.
Shi, Y., Chen, M., Wang, X., Yang, H., Yu, H., & Hao, X. (2023). Efficiency analysis and evaluation of centrifugal variable-rate fertilizer spreading based on real-time spectral information on rice. Computers and Electronics in Agriculture204, 107505.
Shirazi, M. A., & Boersma, L. (1984). A unifying quantitative analysis of soil texture. Soil Science Society of America Journal48(1), 142-147.
Srivastav, A. L., Patel, N., Rani, L., Kumar, P., Dutt, I., Maddodi, B. S., & Chaudhary, V. K. (2024). Sustainable options for fertilizer management in agriculture to prevent water contamination: a review. Environment, Development and Sustainability26(4), 8303-8327.
Tariq, M., Rozina, G., Fazal, M., Fazal, J., Zahid, H., Nadia, N., Hamayoon, K. & Hayatullah, K. (2011). Effect of different phosphorus levels on the yield and yield components of maize. Sarhad Journal Agriculture, 27, 165-170.
Teramage, M. T., Asfaw, M., Demissie, A., Feyissa, A., Ababu, T., Gonfa, Y., & Sime, G. (2023). Effects of land use types on the depth distribution of selected soil properties in two contrasting agro-climatic zones. Heliyon9(6).
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature418(6898), 671-677.van der Putten, W. H., Bardgett, R. D., Farfan, M., Montanarella, L., Six, J., & Wall, D. H. (2023). Soil biodiversity needs policy without borders. Science379(6627), 32-34.
Wang, Z., Li, J., Hao, F., & Li, Y. (2017). Effects of phosphorus fertigation and lateral depths on distribution of Olsen-P in soil and yield of maize under subsurface drip irrigation. In 2017 ASABE Annual International Meeting (p. 1). American Society of Agricultural and Biological Engineers.
Zhang, F., Shen, J., Zhang, J., Zuo, Y., Li, L., & Chen, X. (2010). Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. Advances in agronomy107, 1-32.
Zhang, W., Lu, J. S., Bai, J., Khan, A., Liu, S. T., Zhao, L., ... & Xiong, Y. C. (2024). Introduction of soybean into maize field reduces N2O emission intensity via optimizing nitrogen source utilization. Journal of Cleaner Production442, 141052.
Zong, R., Wang, Z., Zhang, J., & Li, W. (2021). The response of photosynthetic capacity and yield of cotton to various mulching practices under drip irrigation in Northwest China. Agricultural Water Management, 249, 106814.