ارزیابی مدل جنگل تصادفی برای محاسبه تبخیر و تعرق مرجع با استفاده از داده‌های هواشناسی محدود در منطقه مطالعاتی دشت اردبیل

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی آب دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی، اردبیل، ایران.

چکیده

به دلیل افزایش فشار جهانی بر در دسترس بودن منابع آب، توجه به تلفات آب بیش‌تر از قبل مشخص می‌گردد، تبخیر و تعرق (ET) به عنوان بخش مهمی از تلفات بوده و تخمین آن برای بررسی تغییرات آب و هوا، جلوگیری از آبیاری ناکارآمد و استفاده مناسب از منابع آب، حیاتی است. علی‌رغم مدل‌های تجربی فراوان برای پیش‌بینی ET، هنوز هیچ اجماع جهانی در مورد استفاده از یک مدل تجربی مشخص وجود ندارد. مدل‌های محاسبات نرم به دلیل نیاز به داده‌های کم‌تر، برای جلوگیری از محدودیت‌ مدل‌های تجربی و برای برآورد دقیق‌تر ET توسعه داده‌ شده‌اند. در این تحقیق برای تخمین تبخیر و تعرق مرجع با داده‌های هواشناسی در حدفاصل سال‌های 1385 تا 1401 و در دشت اردبیل کارایی دو مدل جنگل تصادفی (RF) و رگرسیون خطی چندگانه (MLR) ارزیابی شد. برای ساخت مدل، از ترکیبب داده‌های 4 ایستگاه هواشناسی استفاده و از ایستگاه پنجم برای ارزیابی نهایی مدل‌ها استفاده شد. آماره‌های ارزیابی شامل R2، NSE و RMSE بود. نتایج به‌دست آمده برای مدل RF به ترتیب برابر بود با 74/0، 743/0 و 20/8 میلی‌متر که در مقایسه با نتایج مدل MLR از دقت بالاتری برخوردار بود. مطالعه حاضر نشان داد که مدل‌های جنگل تصادفی می‌تواند یک مدل مطمئن با در نظر گرفتن دقت و ثبات، برای پیش‌بینی ETo و با استفاده از مجموعه داده‌های محدود باشد. به طور کلی، با استفاده از نتایج این تحقیق می‌توان گفت که مدل‌های RF، تبخیر و تعرق مرجع را در مناطقی با داده‌های محدود با دقت قابل قبولی شبیه‌سازی می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Random Forest model to calculate potential Evapotranspiration using limited meteorological data (study area: Ardabil Plain)

نویسندگان [English]

  • javanshir azizi mobaser
  • ali rasoulzadeh
  • Amin Akbari Majd
Department of Water Engineering, Faculty of Agriculture and Natural Resources, Water Management Research Center, University of Mohaghegh Ardabili, Ardabil , Iran
چکیده [English]

As the global demand for water resources increases, the reduction in water loss, including Evapotranspiration, becomes more obvious. Although many models have been developed to predict evapotranspiration, no universally accepted model for all climate regions has been established. Several soft computational models have been created to circumvent the constraints of empirical models and accurately predict ET. Soft computing models typically require less data and are applicable across various climatic zones. This study aimed to analyze how well two Random Forest models and Multiple Linear Regression could predict ETo in the Ardabil plain region. Meteorological data from the Iranian Meteorological Organization were used to calculate the reference evapotranspiration from 2014 to 2016. In constructing the model, data from 4 meteorological stations were combined to generate a random time series, while the fifth station was reserved for evaluating the models. The assessment metrics used comprised RMSE, R2, and NSE. The RF model achieved higher accuracy with R2, NSE, and RMSE values of 0.74, 0.743, and 8.20 mm, respectively, compared to the MLR model. The results demonstrate that random forest models are reliable tools for forecasting ETo with minimal climate data. In general, using the results of this study and other similar research, we conclude that RF and MLR models simulate potential evapotranspiration with acceptable accuracy but are sensitive to the number of input parameters.

کلیدواژه‌ها [English]

  • machine learning
  • multiple linear regression
  • random forest
  • reference evapotranspiration

EXTENDED ABSTRACT

Introduction

Water is necessary for environmental protection and meeting various human needs. Water is used for agricultural, domestic, energy generation, recreational, and industrial purposes (directly) and irrigation of green areas (indirectly). Furthermore, proper ET assessment is critical for controlling agricultural water requirements, monitoring and efficiently using water supplies, and forecasting droughts or similar situations. Despite using multiple empirical models for ET prediction, no consensus exists on the suitability of applying all the proposed models across diverse climate zones. Various soft computing models have been developed to overcome the restrictions associated with empirical models and appropriately estimate ET.

Method and Materials

The measurements were conducted in the Ardabil Plain region and its surrounding basin. In this research, model inputs, which included meteorological data, were sourced from the Iranian Meteorological Organization’s website between 2006 and 2023. The output and target parameters, which included reference evapotranspiration data, were computed every 10 days (first, second, and third decade of each month) using the FAO Penman-Monteith method (FAO56). This research uses two models, multiple linear regression and random forest, to estimate reference evapotranspiration in the Ardabil plain. In this research, the primary approach was to assess the precision of the random forest model in estimating reference evapotranspiration using observational data, which was initially compared in the correlation analysis of 14 meteorological parameters with reference evapotranspiration data. By examining the correlations between the primary parameters, the parameters that displayed a very low correlation with the reference evapotranspiration were removed from the input data list. Finally, the models and the remaining meteorological data with a mixed-random time series were used to compute the reference evapotranspiration. Evaluation statistics such as the Nash-Sutcliffe efficiency coefficient (NSE), R2, and mean square error were used in this study.

Results

From 2006 to 2023, meteorological data were first calculated at five meteorological stations: Nair, Sarein, Ardabil, Ardabil Airport, and Nemin. Using data from four meteorological stations—Nair, Sarein, Ardabil, and Ardabil Airport—a model was developed to understand and establish a relationship between input parameters and reference evaporation and transpiration during the statistical period. Finally, the models were evaluated using data from the Namin station, which had the shortest statistical period and the least complete data among the stations. The final input characteristics were the minimum, maximum, and average temperatures, evaporation, maximum wind direction, daily daylight hours, and soil temperature. A random mix of data from four stations that created a time series with a period of 1600 units was used to train or construct the models in the first stage. The obtained Namin station was then used to evaluate the final model.

The RF model was more accurate in calculating the reference evapotranspiration from the same data, according to the obtained R2, NSE, and RMSE values. The present study also demonstrated that, when considering accuracy and stability, hybrid learning models, such as random forest and random tree models, can be reliable machine learning models for predicting ETo using limited climate datasets for different climatic zones of the Ardabil Plain.

Conclusions

Although using all seven parameters produced the best results, the results showed that the parameters of soil temperature, maximum temperature, average temperature, minimum temperature, wind speed direction, hours of radiation, and evaporation made up the best-suggested combination. Temperature parameters are more important when estimating reference evapotranspiration using the Penman-Monteith technique, according to the constant coefficients obtained from the MLR model at the model's input. Additionally, the RF model outperformed the MLR model regarding prediction accuracy among the models included in the study.

Author Contributions

A.A.M.: Writing – original draft, Formal analysis, Conceptualization, Data curation, Methodology, Validation, Writing – review & editing. J.A.M.: Writing – review & editing. A.R.: Writing – review & editing.

Data Availability Statement

Not applicable

Acknowledgments

The authors would like to thank all participants of the present study.

 

Ethical considerations

The Ethics Committee of the Mohaghegh Ardabili University approved the study. The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Abdzad Gohari, A., Nik Akhtar, A., Ebrahimipak, N., & Tafteh, A. (2023). Using NIAZAB System to Determine Soybean Water Use Based on the Inverse Solution of the Production Functions under Different Irrigation Conditions. Journal of Water Research in Agriculture, 37(2), 159-169. http://10.22092/jwra.2023.361550.978. (In Persian).
Abed, M., Imteaz, M. A., Ahmed, A. N., & Huang, Y. F. (2022). Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms. Sci Rep, 12(1), 13132. http://10.1038/s41598-022-17263-3.
Adnan, R. M., Liang, Z., Heddam, S., Zounemat-Kermani, M., Kisi, O., & Li, B. (2020). Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs. Journal of Hydrology, 586, 124371. https://doi.org/10.1016/j.jhydrol.2019.124371.
Aghelpour, P., Bahrami-Pichaghchi, H., & Karimpour, F. (2022). Estimating daily rice crop evapotranspiration in limited climatic data and utilizing the soft computing algorithms MLP, RBF, GRNN, and GMDH. Complexity, 2022(1), 4534822. https://doi.org/10.1155/2022/4534822.
Akbari Majd, A., Azizi Mobaser, J., Rasoulzadeh, A., Hasanpour Kashani, M., & Kisi, O. (2024). Enhancing the accuracy of metaheuristic neural networks in predicting underground water levels using meteorological data and remote sensing: A case study of Ardabil Plain, Iran. Ain Shams Engineering Journal, 103061. https://doi.org/10.1016/j.asej.2024.103061.
Alizamir, M., Kisi, O., Muhammad Adnan, R., & Kuriqi, A. (2020). Modelling reference evapotranspiration by combining neuro-fuzzy and evolutionary strategies. Acta Geophysica, 68, 1113-1126. https://doi.org/10.1007/s11600-020-00446-9.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 (Vol. 300).
Amani, S., & Shafizadeh-Moghadam, H. (2023). A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data. Agricultural water management, 284, 108324. https://doi.org/10.1016/j.agwat.2023.108324.
Ao, Y., Li, H., Zhu, L., Ali, S., & Zhongguo, Y. (2018). The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling. Journal of Petroleum Science and Engineering, 174. https://10.1016/j.petrol.2018.11.067.
Aryalekshmi, B., Biradar, R. C., Chandrasekar, K., & Ahamed, J. M. (2021). Analysis of various surface energy balance models for evapotranspiration estimation using satellite data. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 1119-1126. https://doi.org/10.1016/j.ejrs.2021.11.007.
Azizi Mobaser, J. (2013). Comparison of different potential evapotranspiration methods in Ardabil plain The Second National Congress on Organic and Conventional Agriculture,  https://civilica.com/doc/271805. https://civilica.com/doc/271805. (In Persian).
Azizi Mobaser, J., & Faraji Amogein, E. (2024). Determining the water requirement of the crop pattern of Ardabil Plain based on up-to-date meteorological statistics. Water and Soil Management and Modelling, 4(1), 285-298. https://10.22098/mmws.2023.12358.1231. (In Persian).
Barideh, R., Veysi, S., Ebrahimipak, N., & Davatgar, N. (2022). The challenge of reference evapotranspiration between the WaPOR data set and geostatistical methods. Irrigation and Drainage, 71(5), 1268-1279. https://doi.org/10.1002/ird.2738.
Breiman, L. (2001). Random Forests. Machine learning, 45(1), 5-32. https://10.1023/A:1010933404324.
Chatfield, C., & Xing, H. (2019). The analysis of time series: an introduction with R. Chapman and hall/CRC.
Chia, M. Y., Huang, Y. F., & Koo, C. H. (2022). Resolving data-hungry nature of machine learning reference evapotranspiration estimating models using inter-model ensembles with various data management schemes. Agricultural water management, 261, 107343. https://doi.org/10.1016/j.agwat.2021.107343.
Chia, M. Y., Huang, Y. F., Koo, C. H., Ng, J. L., Ahmed, A. N., & El-Shafie, A. (2022). Long-term forecasting of monthly mean reference evapotranspiration using deep neural network: A comparison of training strategies and approaches. Applied Soft Computing, 126, 109221. https://doi.org/10.1016/j.asoc.2022.109221.
Coucke, W., & Soumali, M. (2017). Demystifying EQA statistics and reports. Biochemia Medica, 27, 37-48. https://10.11613/BM.2017.006.
Da Silva, H. J., Santos, M., Cabral Júnior, J., & Spyrides, M. H. (2016). Modeling of reference evapotranspiration by multiple linear regression. Journal of Hyperspectral Remote Sensing, 6. https://10.5935/2237-2202.20160005.
DehghaniSanij, H., Yamamoto, T., & Rasiah, V. (2004). Assessment of evapotranspiration estimation models for use in semi-arid environments. Agricultural water management, 64(2), 91-106. https://doi.org/10.1016/S0378-3774(03)00200-2.
Dimitriadou, S., & Nikolakopoulos, K. G. (2022). Multiple Linear Regression Models with Limited Data for the Prediction of Reference Evapotranspiration of the Peloponnese, Greece. Hydrology, 9(7), 124. https://doi.org/10.3390/hydrology9070124.
Dong, X., Yu, Z., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble learning. Frontiers of Computer Science, 14(2), 241-258. https://10.1007/s11704-019-8208-z.
Draper, N. (1998). Applied regression analysis. McGraw-Hill. Inc.
Duhan, D., Singh, M. C., Singh, D., Satpute, S., Singh, S., & Prasad, V. (2023). Modeling reference evapotranspiration using machine learning and remote sensing techniques for semi-arid subtropical climate of Indian Punjab. Journal of Water and Climate Change, 14(7), 2227-2243. https://doi.org/10.2166/wcc.2023.003.
El-Kenawy, E.-S. M., Zerouali, B., Bailek, N., Bouchouich, K., Hassan, M. A., Almorox, J.,…Ibrahim, A. (2022). Improved weighted ensemble learning for predicting the daily reference evapotranspiration under the semi-arid climate conditions. Environmental Science and Pollution Research, 29(54), 81279-81299. https://doi.org/10.1007/s11356-022-21410-8.
Elbeltagi, A., Raza, A., Hu, Y., Al-Ansari, N., Kushwaha, N., Srivastava, A.,…Zubair, M. (2022). Data intelligence and hybrid metaheuristic algorithms-based estimation of reference evapotranspiration. Applied Water Science, 12(7), 152. https://10.1007/s13201-022-01667-7.
Fakhar, M. S., & Kaviani, A. (2021). Comparison of the Concepts of Potential and Reference Evapotranspiration using Lysimetric Data in Qazvin Province. Environment and Water Engineering, 7(4), 668-682. https://10.22034/jewe.2021.279059.1535. (In Persian).
Fan, J., Ma, X., Wu, L., Zhang, F., Yu, X., & Zeng, W. (2019). Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data. Agricultural water management, 225, 105758. https://doi.org/10.1016/j.agwat.2019.105758.
Fan, J., Yue, W., Wu, L., Zhang, F., Cai, H., Xiukang, W.,…Xiang, Y. (2018). Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agricultural and Forest Meteorology, 263, 225-241. https://10.1016/j.agrformet.2018.08.019.
Fattahi Dolatabadi, K., babazadeh, H., najafi, P., & sedghi, h. (2018). A Model for Irrigation Scheduling Using the Difference between Air and Leaf Temperature of Corn. Journal of Water Research in Agriculture, 32(2), 305-320. 10.22092/jwra.2018.116972.
Feng, Y., Peng, Y., Cui, N., Gong, D., & Zhang, K. (2017). Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Computers and Electronics in Agriculture, 136, 71-78. https://doi.org/10.1016/j.compag.2017.01.027.
Ferreira, L. B., da Cunha, F. F., & Fernandes Filho, E. I. (2022). Exploring machine learning and multi-task learning to estimate meteorological data and reference evapotranspiration across Brazil. Agricultural water management, 259, 107281. https://doi.org/10.1016/j.agwat.2021.107281.
Gavili, S., Sanikhani, H., Kisi, O., & Mahmoudi, M. H. (2018). Evaluation of several soft computing methods in monthly evapotranspiration modelling. Meteorological Applications, 25(1), 128-138. https://10.1002/met.1676.
Gharehbaghi, A., Afaridegan, E., Kaya, B., & Adhami, M. (2024). Calibration and evaluation of various reference evapotranspiration estimation methods in a humid subtropical climate: A case study in Samsun Province, Türkiye. Physics and Chemistry of the Earth Parts A/B/C, 136. https://10.1016/j.pce.2024.103734.
Glantz, M. H. (1990). On the interactions between climate and society. Population and Development Review, 16, 179-200. https://10.1007/s11707-008-0045-6.
Gocić, M., Motamedi, S., Shamshirband, S., Petković, D., Ch, S., Hashim, R., & Arif, M. (2015). Soft computing approaches for forecasting reference evapotranspiration. Computers and Electronics in Agriculture, 113, 164-173. https://doi.org/10.1016/j.compag.2015.02.010.
Gokcekus, H., Kassem, Y., & Woyea, L. T. (2023). A Prediction of Rainfall of Haifa Using MLR and ARIMA Models. International Journal of Engineering and Applied Physics, 3(1), 612-624. https://ijeap.org/ijeap/article/view/109.
Hassan, M. A., Khalil, A., Kaseb, S., & Kassem, M. A. (2017). Exploring the potential of tree-based ensemble methods in solar radiation modeling. Applied Energy, 203, 897-916. https://doi.org/10.1016/j.apenergy.2017.06.104.
Heckert, N., Filliben, J., Croarkin, C., Hembree, B., Guthrie, W., Tobias, P., & Prinz, J. (2002). Handbook 151: NIST/SEMATECH e-Handbook of Statistical Methods. NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD.
Hou, W., Yin, G., Gu, J., & Ma, N. (2023). Estimation of Spring Maize Evapotranspiration in Semi-Arid Regions of Northeast China Using Machine Learning: An Improved SVR Model Based on PSO and RF Algorithms. Water, 15(8), 1503. https://doi.org/10.3390/w15081503.
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International journal of forecasting, 22(4), 679-688.
Jafarzadeh, J., & Jafarzadeh, B. (2017). Providing suggested solutions for optimal utilization of existing water resources in the Ardabil Plain The1st International Congress on Earth, Space & Clean Energy,  https://civilica.com/doc/456620/. (In Persian).
Jensen, M. E. (1968). Water consumption by agricultural plants (Chapter 1). https://eprints.nwisrl.ars.usda.gov/id/eprint/742
Kalluri, S., Gilruth, P., & Bergman, R. (2003). The potential of remote sensing data for decision makers at the state, local and tribal level: experiences from NASA’s Synergy program. Environmental Science & Policy, 6(6), 487-500. https://doi.org/10.1016/j.envsci.2003.08.002.
Kalteh, A. M., & Hjorth, P. (2009). Imputation of missing values in precipitation-runoff process database. Hydrology Research, 40. https://10.2166/nh.2009.001.
Karimi, S. R., Nasrolahi, A., & Iranshahi, M. (2024). Investigating the effects of climate change on reference evapotranspiration based on the SSP scenarios. Iranian Journal of Soil and Water Research, 54(11), 1759-1777. https://10.22059/ijswr.2023.358697.669493. (In Persian).
Kaya, Y. Z., Zelenakova, M., Üneş, F., Demirci, M., Hlavata, H., & Mesaros, P. (2021). Estimation of daily evapotranspiration in Košice City (Slovakia) using several soft computing techniques. Theoretical and Applied Climatology, 144, 287-298. https://doi.org/10.1007/s00704-021-03525-z.
Koç, D. L., & Erkan Can, M. (2023). Reference evapotranspiration estimate with missing climatic data and multiple linear regression models. PeerJ, 11. https://10.7717/peerj.15252.
Kord, M., & Asghari-moghaddam, A. (2014). Evaluation of drinking water quality of Ardabil plain aquifer by cokriging and fuzzy logic. Journal of Water and Soil Conservation, 21(5), 225-240. https://20.1001.1.23222069.1393.21.5.12.5. (2322-2069).
Krzywinski, M., & Altman, N. (2015). Multiple linear regression: when multiple variables are associated with a response, the interpretation of a prediction equation is seldom simple [Report]. Nature Methods, 12, 1103+. https://doi.org/10.1038/nmeth.3665.
Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., Bejarano, M. D., & Garrote, L. (2021). Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition. Renewable and Sustainable Energy Reviews, 142, 110833. https://doi.org/10.1016/j.rser.2021.110833.
Li, Z.-L., Tang, R., Wan, Z., Bi, Y., Zhou, C., Tang, B.,…Zhang, X. (2009). A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors, 9(05), 3801-3853. https://doi.org/10.3390/s90503801.
Little, T., Thompson, B., Coxe, S., Woods, C., von Eye, A., Buskirk, T.,…Wang, L. (2013). The Oxford Handbook of Quantitative Methods in Psychology: Vol. 2: Statistical Analysis. https://10.1093/oxfordhb/9780199934898.001.0001.
Liu, D., Wang, Z., Wang, L., Chen, J., Li, C., & Shi, Y. (2024). Improved remote sensing reference evapotranspiration estimation using simple satellite data and machine learning. Science of The Total Environment, 947, 174480. https://doi.org/10.1016/j.scitotenv.2024.174480.
Malik, A., Saggi, M. K., Rehman, S., Sajjad, H., Inyurt, S., Bhatia, A. S.,…Yaseen, Z. M. (2022). Deep learning versus gradient boosting machine for pan evaporation prediction. Engineering Applications of Computational Fluid Mechanics, 16(1), 570-587. https://.
Martí, P., González-Altozano, P., López-Urrea, R., Mancha, L. A., & Shiri, J. (2015). Modeling reference evapotranspiration with calculated targets. Assessment and implications. Agricultural water management, 149, 81-90. https://doi.org/10.1016/j.agwat.2014.10.028.
Martí, P., López-Urrea, R., Mancha, L. A., González-Altozano, P., & Román, A. (2024). Seasonal assessment of the grass reference evapotranspiration estimation from limited inputs using different calibrating time windows and lysimeter benchmarks. Agricultural water management, 300, 108903. https://doi.org/10.1016/j.agwat.2024.108903.
Mazidi, M., Hesam, M., Ghorbani, K., & Komaki, C. B. (2024). Evaluation of Cotton Water Stress Estimation Using Multispectral Satellite Images Based on M5 Tree Model. Journal of Water Research in Agriculture, 37(4), 385-400. https://10.22092/jwra.2023.363398.1005. (In Persian).
Mohammadi, A., NajafiMood, M. H., khashei, A., & Shahidi, A. (2021). Determination of Crop Coefficient of Narcissus Flower by Lysimeter method in Birjand Plain. Journal of Water Research in Agriculture, 34(4), 591-601. https://10.22092/jwra.2021.123654. (In Persian).
Mokari, E., DuBois, D., Samani, Z., Mohebzadeh, H., & Djaman, K. (2022). Estimation of daily reference evapotranspiration with limited climatic data using machine learning approaches across different climate zones in New Mexico. Theoretical and Applied Climatology, 147, 575-587. https://doi.org/10.1007/s00704-021-03855-y.
Monteiro, A. F. M., Martins, F. B., Torres, R. R., de Almeida, V. H. M., Abreu, M. C., & Mattos, E. V. (2021). Intercomparison and uncertainty assessment of methods for estimating evapotranspiration using a high-resolution gridded weather dataset over Brazil. Theoretical and Applied Climatology, 146(1), 583-597. https://doi.org/10.1007/s00704-021-03747-1.
Mostafa, R. R., Kisi, O., Adnan, R. M., Sadeghifar, T., & Kuriqi, A. (2023). Modeling Potential Evapotranspiration by Improved Machine Learning Methods Using Limited Climatic Data. Water, 15(3), 486. https://doi.org/10.3390/w15030486.
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6.
Nolan, B. T., Fienen, M. N., & Lorenz, D. L. (2015). A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA. Journal of Hydrology, 531, 902-911. https://doi.org/10.1016/j.jhydrol.2015.10.025.
Organization, W. M. (2008). Manual on Low-flow Estimation and Prediction. World Meteorological Organization. https://books.google.com/books?id=A5YiQwAACAAJ
Pagano, A., Amato, F., Ippolito, M., De Caro, D., Croce, D., Motisi, A.,…Tinnirello, I. (2023). Machine learning models to predict daily actual evapotranspiration of citrus orchards under regulated deficit irrigation. Ecological Informatics, 76, 102133. https://doi.org/10.1016/j.ecoinf.2023.102133.
Piña-Monarrez, M. R., & Ortiz-Yañez, J. F. (2015). Weibull and lognormal Taguchi analysis using multiple linear regression. Reliability Engineering & System Safety, 144, 244-253. https://doi.org/10.1016/j.ress.2015.08.004.
Rahimikhoob, A. (2016). Comparison of M5 Model Tree and Artificial Neural Network’s Methodologies in Modelling Daily Reference Evapotranspiration from NOAA Satellite Images. Water resources management, 30(9), 3063-3075. https://10.1007/s11269-016-1331-9.
Rasoulzadeh, A., & Ghoorabjiri, M. (2014). Comparing hydraulic properties of different forest floors. Hydrological Processes, 28. https://10.1002/hyp.10006.
Rasoulzadeh, A., & Yaghoubi, A. (2014). Inverse modeling approach for determining soil hydraulic properties as affected by application of cattle manure. International Journal of Agricultural and Biological Engineering, 7, 27-35. https://10.3965/j.ijabe.20140702.004.
Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., & Schaphoff, S. (2008). Agricultural green and blue water consumption and its influence on the global water system. Water Resources Research, 44(9). https://10.1029/2007WR006331.
Ruiz-Aĺvarez, M., Gomariz-Castillo, F., & Alonso-Sarría, F. (2021). Evapotranspiration Response to Climate Change in Semi-Arid Areas: Using Random Forest as Multi-Model Ensemble Method. Water, 13(2), 222. https://doi.org/10.3390/w13020222.
Saremi, M. (2015). Determination of Effective Parameters in Estimating Reference Crop Evapotranspiration Using Artificial Neural Networks (Case study: Lorestan province). Iranian Journal of Irrigation & Drainage, 9(4), 614-623, Article (In Persain). https://idj.iaid.ir/article_55085.html?lang=en. (2008-7942).
Shamshirband, S., Amirmojahedi, M., Gocić, M., Akib, S., Petković, D., Piri, J., & Trajkovic, S. (2016). Estimation of reference evapotranspiration using neural networks and cuckoo search algorithm. Journal of Irrigation and Drainage Engineering, 142(2), 04015044. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000949.
Sharma, G., Singh, A., & Jain, S. (2022a). DeepEvap: Deep reinforcement learning based ensemble approach for estimating reference evapotranspiration. Applied Soft Computing, 125, 109113. https://doi.org/10.1016/j.asoc.2022.109113.
Sharma, G., Singh, A., & Jain, S. (2022b). A hybrid deep neural network approach to estimate reference evapotranspiration using limited climate data. Neural Computing and Applications, 1-20. https://doi.org/10.1007/s00521-021-06661-9.
Shiri, J. (2018). Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology. Journal of Hydrology, 561, 737-750. https://doi.org/10.1016/j.jhydrol.2018.04.042.
Shiri, J., Sadraddini, A., Nazemi, A., Kisi, O., Landeras, G., fakheri fard, A., & Marti, P. (2014). Generalizability of Gene Expression Programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. Journal of Hydrology, 508, 1-11. https://10.1016/j.jhydrol.2013.10.034.
Shu, Z., Zhou, Y., Zhang, J., Jin, J., Wang, L., Cui, N.,…Chen, X. (2022). Parameter regionalization based on machine learning optimizes the estimation of reference evapotranspiration in data deficient area. Sci Total Environ, 844, 157034. https://10.1016/j.scitotenv.2022.157034.
Shu, Z., Zhou, Y., Zhang, J., Jin, J., Wang, L., Cui, N.,…Chen, X. (2022). Parameter regionalization based on machine learning optimizes the estimation of reference evapotranspiration in data deficient area. Science of The Total Environment, 844, 157034. https://doi.org/10.1016/j.scitotenv.2022.157034.
Soltani, A., Mirlatifi, S. M., & Dehghanisanij, H. (2012). Estimating Reference Evapotranspiration Using Limited Weather Data under Different Climatic Conditions. Water and Soil, 26(1), -. https://10.22067/jsw.v0i0.13637. (In Persian).
Song, E., Zhu, X., Shao, G., Tian, L., Zhou, Y., Jiang, A., & Lu, J. (2023). Multi-Temporal Remote Sensing Inversion of Evapotranspiration in the Lower Yangtze River Based on Landsat 8 Remote Sensing Data and Analysis of Driving Factors. Remote Sensing, 15(11), 2887. https://doi.org/10.3390/rs15112887.
Soultani, N. (2018). Evaluating efficiency of empirical estimation reference evapotranspiration (Pan based method) in different climate conditionss (Case Study of Iran). Iran-Water Resources Research, 14(4), 170-183. https://doi.org/10.22092/jwra.2021.123654. (In Persian).
Steel, R. G. D., & Torrie, J. H. (1960). Principles and procedures of statistics. https://doi.org/10.2134/agronj1961.00021962005300050002x
T R, J., Reddy, N. V. S., & Acharya, U. D. (2023). Modeling Daily Reference Evapotranspiration from Climate Variables: Assessment of Bagging and Boosting Regression Approaches. Water resources management, 37(3), 1013-1032. https://10.1007/s11269-022-03399-4.
Tabatabaei, S. M., Sohrabi, T., Mohebalhojeh, A., & Hoorfar, A. (2023). Evaluation and Development of Hargreaves-Samani Evapotranspiration Equation Based on Humidity Conditions. Iranian Journal of Soil and Water Research, 53(12), 2863-2873. https://10.22059/ijswr.2023.351792.669405. (In Persian).
Veysi, S., Nouri, M., & Jabbari, A. (2024). Reference evapotranspiration estimation using reanalysis and WaPOR products in dryland Croplands. Heliyon, 10(4), e26531. https://doi.org/10.1016/j.heliyon.2024.e26531.
Wang, L., Kisi, O., Hu, B., Bilal, M., Zounemat-Kermani, M., & Li, H. (2017). Evaporation modelling using different machine learning techniques. International Journal of Climatology, 37(S1), 1076-1092. https://doi.org/10.1002/joc.5064.
Wu, L., & Fan, J. (2019). Comparison of neuron-based, kernel-based, tree-based and curve-based machine learning models for predicting daily reference evapotranspiration. PLOS ONE, 14(5), e0217520. https://10.1371/journal.pone.0217520.
Wu, M., Feng, Q., Wen, X., Deo, R. C., Yin, Z., Yang, L., & Sheng, D. (2020). Random forest predictive model development with uncertainty analysis capability for the estimation of evapotranspiration in an arid oasis region. Hydrology Research, 51(4), 648-665. https://10.2166/nh.2020.012.
Shirmohamadi, Z., Saberali, F., & Kouhi, M. (2020). Evaluation of Different Methods of Calculating the Potential Evapotranspiration at the Annual Timescale in the Northeast of Iran [Research]. Watershed Manage Res, 11(22), 199-209. https://10.52547/jwmr.11.22.199. (In Persian).
Zhao, L., Xia, J., Xu, C.-y., Wang, Z., Sobkowiak, L., & Long, C. (2013). Evapotranspiration estimation methods in hydrological models. Journal of Geographical Sciences, 23, 359-369. https://doi.org/10.1007/s11442-013-1015-9.
Zhao, L., Zhao, X., Li, Y., Shi, Y., Zhou, H., Li, X.,…Xing, X. (2023). Applicability of hybrid bionic optimization models with kernel-based extreme learning machine algorithm for predicting daily reference evapotranspiration: a case study in arid and semiarid regions, China. Environmental Science and Pollution Research, 30(9), 22396-22412. https://10.1007/s11356-022-23786-z.
Zheng, C., Jia, L., & Hu, G. (2022). Global land surface evapotranspiration monitoring by ETMonitor model driven by multi-source satellite earth observations. Journal of Hydrology, 613, 128444. https://doi.org/10.1016/j.jhydrol.2022.128444.
Zhu, T. (2020). Analysis on the Applicability of the Random Forest. Journal of Physics: Conference Series, 1607, 012123. https://10.1088/1742-6596/1607/1/012123.