بررسی کارایی نانو کامپوزیت هیدروچار در حذف کادمیم از محلول آبی با استفاده از سطح پاسخ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک دانشگاه شهید باهنر کرمان ایران

2 گروه علوم خاک، دانشگاه شهید باهنر کرمان، کرمان، ایران

3 دانشیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

چکیده

هدف از این مطالعه سنتز و بررسی تأثیر هیدروچار اصلاح شده با نانوذره روی صفر ظرفیتی و تثبیت با سیترات سدیم (HC@nZVZ@SC) در حذف کادمیم از محلول آبی تحت‌تأثیر فاکتورهای مؤثر بر حذف است. بدین منظور عوامل مؤثر بر حذف شامل مقدار جاذب، زمان تماس، غلظت اولیه و pH  با استفاده از روش سطح پاسخ (RSM)  بر اساس طرح مکعب مرکزی CCD)) برای بهینه‌سازی حذف یون کادمیم (Cd)  توسط هیدروچار اصلاح شده با نانوذره روی صفر ظرفیتی و تثبیت با سیترات سدیم از محلول‏های آبی طراحی شد. همچنین برای بررسی بارگذاری موفق نانوذره روی صفر ظرفیتی بر روی هیدروچار از روش‏های طیف‌سنجی پراش انرژی پرتو ایکس(SEM) ، میکروسکوپ الکترونی روبشی (EDX)، طیف‌سنج مادون قرمز (FTIR)  و طیف سنجی پرتو ایکس (XRD)  استفاده شد. نتایج EDX، SEM، FTIR و XRD نشان داد که نانوذره روی صفر ظرفیتی با موفقیت بر روی هیدروچار بارگذاری شد. مقدار P-value کمتر از 0001/0 و R2 بالا (98/0) نشان داد. پیش‏بینی حذف کادمیم از محلول آبی توسط جاذب به خوبی و  با دقت بالا توسط مدل طرح مکعب مرکزی انجام شد. نتایج نشان داد که حذف بهینه کادمیم در 7pH= ، غلظت اولیه 75 میلی‏گرم در لیتر، زمان تماس 60 دقیقه و مقدار  جاذب 5/1 گرم در لیتر به‏دست آمد که 35/91 درصد بود. به‏طورکلی نتایج این مطالعه نشان داد که هیدروچار اصلاح شده با نانوذره روی صفر ظرفیتی و تثبیت با سیترات سدیم می‏تواند به‏عنوان یک جاذب ارزان قیمت و  با کارایی بالا در حذف فلزات سنگین از پساب به ‏کار برده شود. همچنین طرح مکعب مرکزی به‏عنوان یک روش کارآمد و کم‌هزینه در مدل‏سازی و بهینه‏سازی حذف آلاینده‏ها از محلول آبی استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the efficiency of hydrochar nanocomposite in removing cadmium from aqueous solution using response surface

نویسندگان [English]

  • ABOLFAZL KHADEMI JOLGENEJAD 1
  • majid fekri 2
  • Majid Hejazi-Mehrizi 3
1 ph.D. Student, Department of Soil Science, Agriculture Faculty, Shahid Bahonar University of Kerman. Iran.
2 Department of soil science,agriculture faculty. shahid bahonar university of kerman
3 Soil science, Faculty of Agriculture, Shahid Bahonar Univ. of Kerman
چکیده [English]

This study aims to synthesize and investigate the effect of hydrochar modified with zero-valence zinc nanoparticles and stabilized with sodium citrate (HC@nZVZ@SC) on removing cadmium from an aqueous solution under the influence of factors affecting the removal. For this purpose, the effective factors on removal include adsorbent dose, contact time, initial concentration, and pH using the response surface method (RSM) based on the central cube design (CCD) to optimize the removal of cadmium (Cd) ions by HC@nZVZ@SC from aqueous solutions. Also, SEM-EDX, FTIR, and XRD methods were used to check the successful loading of zero-valent zinc nanoparticles on hydrochar. SEM-EDX, FTIR, and XRD results showed that zero valence zinc nanoparticles were successfully loaded on hydrochar. The low P value (<0.0001) and high R2 (0.98) showed that the prediction of cadmium removal from aqueous solution by the adsorbent was done well and with high accuracy by the CCD model. The results showed that the optimal removal of cadmium was achieved at pH = 7, the initial concentration was 75 mg/L, the contact time was 60 minutes, and the adsorbent dose was 1.5 g/L, which was 91.35%. In general, the results of this study showed that hydrochar modified with zero-valent zinc nanoparticles and stabilized with sodium citrate can be used as an inexpensive and high-efficiency adsorbent in removing heavy metals from wastewater. Also, the central cube design should be used as an efficient and low-cost method in modeling and optimizing the removal of pollutants from aqueous solution.

کلیدواژه‌ها [English]

  • aqueous solution
  • nanoparticle
  • response surface
  • sodium citrate

EXTENDED ABSTRACT

Introduction

Heavy metal pollution, including cadmium (Cd) pollution, is a global environmental problem due to its non-biodegradability and high accumulation ability. Adsorption is considered one of the most important and effective wastewater and control technologies because it provides an economical and efficient way to remove pollutants from wastewater. Among the common adsorbents, hydrochar (HC) has been considered a promising adsorbent for the removal of heavy metals from terrestrial ecosystems and water resources due to its advantages, such as cost-effectiveness and environmental compatibility. However, due to surface characteristics, heterogeneous nature, and low porous structures, the application of pristine hydrochar is limited. Deposition of metal nanoparticles on porous substrates such as hydrochar by increasing the number of adsorption sites and specific surface area, reaction mechanism, and thermal stability improves their properties and, at the same time, increases their resistance against oxidation. However, due to nanometals' surface energy and high activity, they tend to oxidize and accumulate quickly during loading, causing them to be unevenly dispersed on the surfaces of the substrates and thus lose their reactivity. Therefore, it is necessary to use a stabilizer to disperse and stabilize nanometals before modifying porous surfaces with metal nanoparticles. Therefore, this study aims to load nanoparticles of zero-valent zinc (nZVZ) on hydrochar obtained from pistachio pulp and stabilize the nanoparticles with sodium citrate (SC) to be used as an efficient adsorbent for the removal of cadmium from an aqueous solution.

Methods and Materials

Pistachio pomace as biomass for biochar production was obtained from a pistachio processing terminal in Anar City, Kerman province. To prepare HC@nZVZ@SC nanocomposite, 1.1468 g of ZnCl2 was added to 940 ml of deionized water. Then 110 ml of sodium citrate solution (1 g per 100 ml) was added to it (the sodium citrate concentration in the system is 0.1 percent). After stirring for 30 min, 550 mg of hydrochar was added to the suspension. Then, dropwise, 50 ml of NaBH4 was added to deposit the nZVZ particles stabilized by sodium citrate on the hydrochar. After 23 hours of aging, it was smooth and dry. Several methods, including XRD, SEM, EDX, and FTIR, were used to check the characteristics of the prepared adsorbent. The cadmium adsorption experiments were carried out by hydrochar adsorbent modified with nZVZ and sodium citrate prepared in batch mode. The effect of effective parameters on the absorption process included the initial concentration of cadmium (concentrations of 25, 50, 75, 100, and 125 mg L-1), contact time (20, 40, 60, 80, and 100 min), pH (3, 5, 7, 9, and 11), and adsorbent amount (0.5, 1, 1.5, 2, and 2.5 g L-1). The response surface method (RSM) based on the central cube design (CCD) was designed to optimize the removal of cadmium (Cd) ions by HC@nZVZ@SC from aqueous solutions.

Results and Discussion

SEM-EDX, FTIR, and XRD results showed that zero valence zinc nanoparticles were successfully loaded on hydrochar. According to the results obtained after adding HC@nZVZ@SC, the percentage of cadmium removal from the aqueous solution was 73–92%. The variance (ANOVA) results were analyzed to evaluate the significance of the main parameters and their interaction effects through P and F values. P values smaller than 0.05 and high F values indicate the significance of the proposed model. To achieve the maximum removal of cadmium from the aqueous solution by HC@nZVZ@SC, the parameters effective in the removal were optimized. The obtained results showed that the maximum removal of cadmium was obtained at a pH of 7, a contact time of 60 minutes, an adsorbent dose of 1.5, and an initial concentration of 75 mg L-1.

Conclusion

In this study, pistachio hydrochar was modified with zero-valent zinc nanoparticles and stabilized with sodium citrate. The adsorbent obtained was used to remove cadmium from an aqueous solution under the influence of pH, concentration, contact time, and adsorbent dose. The cadmium removal process was optimized using the response surface method and Design Expert software. The results showed that zinc nanoparticles (nZVZ) were successfully loaded on hydrochar. According to the values of P, F, and R2, it can be concluded that the quadratic model was suitable for analyzing the data on cadmium removal by modified hydrochar. Also, according to the obtained results, the optimal conditions for cadmium removal by HC@nZVZ@SC were pH 7, adsorbent dose 1.5 g L-1, contact time 60 minutes, and concentration 75 g L-1.

Authors Contributions

Abolfazl Khademi-Jolgenejad: Carried out the experiment and analyzed the data. Wrote the manuscript. Discussed the results and contributed to the final manuscript. Majid Fekri: Conceived of the presented idea. Supervised the project (supervisor). Edited and reviewed the manuscript. Contributed to the final version of the manuscript. And discussed the results and contributed to the final manuscript. Majid Hejazi-Mehrizi: Helped advise and review the project. (advisor). All authors have read and agreed to the published version of the manuscript. All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

Data available on request from the authors.

Ethical considerations

The study was approved by the Ethics Committee of the University of Shahid Bahonar University of Kerman. The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The authors declare no conflict of interest.

Algethami, J. S., Alhamami, M. A. M., Alqadami, A. A., Melhi, S., & Seliem, A. F. (2023). Adsorptive performance of a new magnetic hydrochar nanocomposite for highly efficient removal of cadmium ions from water: Mechanism, modeling, and reusability studies. Environmental Technology & Innovation, (32), 103404.
Al-Swadi, H. A., Al-Farraj, A. S., Al-Wabel, M. I., Ahmad, M., Ahmad, J., Mousa, M. A., Rafique, M. I., & Usama, M. (2023). Kaolinite-composited biochar and hydrochar as low-cost adsorbents for the removal of cadmium, copper, lead, and zinc from aqueous solutions. Sustainability, 15(22), 15978.
Asfaram, A., Ghaedi, M., Ghezelbash, G. R., Dil, E. A., Tyagi, I., Agarwal, S., & Gupta, V. K. (2016). Biosorption of malachite green by novel biosorbent Yarrowia lipolytica isf7: application of response surface methodology. Journal of Molecular Liquids, (214), 249–258.
Bahrami, M., Broumandnesb, S., Kashkouli, H.A., Farkhian Firouzi, A. and Babaei, A. A. (2011). Removal of cadmium from aqueous solutions using modified magnetite nanoparticles. Period 6(3). 221-232. (inPersian)
Bahrami, Mehdi; Borumandnasab, Saeed; Kashkouli, Haider Ali; Farkhian Firouzi, Ahmed and Babaei, Ali Akbar (2011). Removal of cadmium from aqueous solutions using modified magnetite nanoparticles. Journal of Mineral Resources Engineering. Period 6(3). 221-232. (In Persian).
Cai, C., Xu, J., Deng, N., Dong, X., Tang, H., Liang, Y., Jain, M., Garg, V. K., Kadirvelu, K., Sillanpa, M., Baltrenaite, J. K. E., Xu, X., Cao, X., Zhao, L., Zhao, J. J., Shen, X. J., Domene, X., Alcañiz, J. M., Liao, X., … Chang, J. J. (2019). Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-46234-4
Cai, C., Zhao, M., Yu, Z., Rong, H., & Zhang, C. (2019). Utilization of nanomaterials for in-situ remediation of heavy metal (loid) contaminated sediments: A review. Science of the Total Environment, (662), 205–217.
Chen, D., Wang, X., Wang, X., Feng, K., Su, J., & Dong, J. (2020). The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil. Science of the Total Environment, (714), 136550. https://doi.org/10.1016/j.scitotenv.2020.136550
Chen, H., Xu, J., Lin, H., Zhao, X., Shang, J., & Liu, Z. (2021). Arsenic removal via a novel hydrochar from livestock waste co-activated with thiourea and γ-Fe2O3 nanoparticles. Journal of Hazardous Materials, (419)(June), 126457. https://doi.org/10.1016/j.jhazmat.2021.126457
Chen, Y., Liang, W., Li, Y., Wu, Y., Chen, Y., Xiao, W., Zhao, L., Zhang, J., & Li, H. (2019). Modification, application and reaction mechanisms of nano-sized iron sulfide particles for pollutant removal from soil and water: A review. Chemical Engineering Journal, (362), 144–159.
Chen, Z., Wei, D., Li, Q., Wang, X., Yu, S., Liu, L., Liu, B., Xie, S., Wang, J., & Chen, D. (2018). Macroscopic and microscopic investigation of Cr (VI) immobilization by nanoscaled zero-valent iron supported zeolite MCM-41 via batch, visual, XPS and EXAFS techniques. Journal of Cleaner Production, (181), 745–752.
Cirtiu, C. M., Raychoudhury, T., Ghoshal, S., & Moores, A. (2011). Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre-and post-grafted with common polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 390(1–3), 95–104.
Deng, J., Liu, Y., Liu, S., Zeng, G., Tan, X., Huang, B., Tang, X., Wang, S., Hua, Q., & Yan, Z. (2017). Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. Journal of Colloid and Interface Science, (506), 355–364. https://doi.org/10.1016/J.JCIS.2017.07.069
Etamed, Gholamreza; Bagheri, Ruholah and Moradi Zaniani, Marzieh (2008). Experimental study of separation of heavy metal ions from aqueous solution by magnetic iron oxide nanoparticles coated with poly(vinyl alcohol). Ministry of Science, Research and Technology - Isfahan University of Technology - Faculty of Chemical Engineering. Master's thesis. (inPersian) https://elmnet.ir/doc/10526626-85121
Faghihzadeh, F., Anaya, N. M., Schifman, L. A., & Oyanedel-Craver, V. (2016). Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles. Nanotechnology for Environmental Engineering, (1), 1–16.
Fang, J., Gao, B., Chen, J., & Zimmerman, A. R. (2015). Hydrochars derived from plant biomass under various conditions: Characterization and potential applications and impacts. Chemical Engineering Journal, (267), 253–259. https://doi.org/10.1016/j.cej.2015.01.026
Fang, J., Gao, B., Chen, J., & Zimmerman, A. R. (2015). Hydrochars derived from plant biomass under various conditions: Characterization and potential applications and impacts. Chemical Engineering Journal, (267), 253–259. https://doi.org/10.1016/j.cej.2015.01.026
Gupta, S., Sireesha, S., Sreedhar, I., Patel, C. M., & Anitha, K. L. (2020). Latest trends in heavy metal removal from wastewater by biochar based sorbents. Journal of Water Process Engineering, (38)(May), 101561. https://doi.org/10.1016/j.jwpe.2020.101561
Hammo, M. M., Akar, T., Sayin, F., Celik, S., & Akar, S. T. (2021). Efficacy of green waste-derived biochar for lead removal from aqueous systems: Characterization, equilibrium, kinetic and application. Journal of Environmental Management, (289)(January), 112490. https://doi.org/10.1016/j.jenvman.2021.112490
He, D., Ma, X., Jones, A. M., Ho, L., & Waite, T. D. (2016). Mechanistic and kinetic insights into the ligand-promoted depassivation of bimetallic zero-valent iron nanoparticles. Environmental Science: Nano, 3(4), 737–744.
Henriques, B., Coppola, F., Monteiro, R., Pinto, J., Viana, T., Pretti, C., Soares, A., Freitas, R., & Pereira, E. (2019). Toxicological assessment of anthropogenic Gadolinium in seawater: Biochemical effects in mussels Mytilus galloprovincialis. Science of the Total Environment, (664), 626–634.
Inyang, M., Gao, B., Pullammanappallil, P., Ding, W., & Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 101(22), 8868–8872.
Iqbal, J., Shah, N. S., Sayed, M., Niazi, N. K., Imran, M., Khan, J. A., Khan, Z. U. H., Hussien, A. G. S., Polychronopoulou, K., & Howari, F. (2021). Nano-zerovalent manganese/biochar composite for the adsorptive and oxidative removal of Congo-red dye from aqueous solutions. Journal of Hazardous Materials, (403)(May 2020), 123854. https://doi.org/10.1016/j.jhazmat.2020.123854
Ismadji, S., Tong, D. S., Soetaredjo, F. E., Ayucitra, A., Yu, W. H., & Zhou, C. H. (2016). Bentonite hydrochar composite for removal of ammonium from Koi fish tank. Applied Clay Science, (119), 146–154.
Jain, M., Garg, V. K., & Kadirvelu, K. (2011). Investigation of Cr (VI) adsorption onto chemically treated Helianthus annuus: optimization using response surface methodology. Bioresource Technology, 102(2), 600–605.
Ji, Y., Zheng, N., An, Q., Sun, S., Wang, S., Li, X., Li, P., Hua, X., Dong, D., Zhao, C., Li, Z., & Zhang, W. (2022). The effect of carbonization temperature on the capacity and mechanisms of Cd(II)-Pb(II) mix-ions adsorption by wood ear mushroom sticks derived biochar. Ecotoxicology and Environmental Safety, (239)(January), 113646. https://doi.org/10.1016/j.ecoenv.2022.113646
Jiang, D., Zeng, G., Huang, D., Chen, M., Zhang, C., Huang, C., & Wan, J. (2018). Remediation of contaminated soils by enhanced nanoscale zero valent iron. Environmental Research, (163), 217–227.
Kabir, E., Kumar, V., Kim, K.-H., Yip, A. C. K., & Sohn, J. R. (2018). Environmental impacts of nanomaterials. Journal of Environmental Management, (225), 261–271.
Karunanayake, A. G., Todd, O. A., Crowley, M., Ricchetti, L., Pittman Jr, C. U., Anderson, R., Mohan, D., & Mlsna, T. (2018). Lead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas fir. Chemical Engineering Journal, (331), 480–491.
Khulbe, K. C., & Matsuura, T. (2018). Removal of heavy metals and pollutants by membrane adsorption techniques. Applied Water Science, (8), 1–30.
Kong, X., Liu, Y., Pi, J., Li, W., Liao, Q. J., & Shang, J. (2017). Low-cost magnetic herbal biochar: characterization and application for antibiotic removal. Environmental Science and Pollution Research, 24(7), 6679–6687. https://doi.org/10.1007/s11356-017-8376-z
Krishnan KA, Anirudhan TS. (2003). Removal of cad - mium (II) from aqueos solutions by steam-activated sulphurised carbon prepared from sugar – cane ba - gasse pith: kinetics and equilibrium studies. Water Research.;29(2):147-56.
Kumar, S., Sahare, P. D., & Kumar, S. (2018). Optimization of the CVD parameters for ZnO nanorods growth: Its photoluminescence and field emission properties. Materials Research Bulletin, (105), 237–245. https://doi.org/https://doi.org/10.1016/j.materresbull.2018.05.002
Lee, H. S., & Shin, H. S. (2021). Competitive adsorption of heavy metals onto modified biochars: Comparison of biochar properties and modification methods. Journal of Environmental Management, (299)(August), 113651. https://doi.org/10.1016/j.jenvman.2021.113651
Li, B., Guo, J., Lv, K., & Fan, J. (2019). Adsorption of methylene blue and Cd (II) onto maleylated modified hydrochar from water. Environmental Pollution, (254), 113014.
Li, D., Cui, H., Cheng, Y., Xue, L., Wang, B., He, H., Hua, Y., Chu, Q., Feng, Y., & Yang, L. (2021). Chemical aging of hydrochar improves the Cd2+ adsorption capacity from aqueous solution. Environmental Pollution, (287), 117562.
Li, R., Wang, J. J., Gaston, L. A., Zhou, B., Li, M., Xiao, R., Wang, Q., Zhang, Z., Huang, H., & Liang, W. (2018). An overview of carbothermal synthesis of metal–biochar composites for the removal of oxyanion contaminants from aqueous solution. Carbon, (129), 674–687.
Liang, J., Li, X., Yu, Z., Zeng, G., Luo, Y., Jiang, L., Yang, Z., Qian, Y., & Wu, H. (2017). Amorphous MnO2 Modified Biochar Derived from Aerobically Composted Swine Manure for Adsorption of Pb(II) and Cd(II). ACS Sustainable Chemistry and Engineering, 5(6), 5049–5058. https://doi.org/10.1021/acssuschemeng.7b00434
Lim, J. Y., Mubarak, N. M., Abdullah, E. C., Nizamuddin, S., Khalid, M., & Inamuddin. (2018). Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — A review. Journal of Industrial and Engineering Chemistry, (66), 29–44. https://doi.org/10.1016/j.jiec.2018.05.028
Lin, Q., Wang, K., Gao, M., Bai, Y., Chen, L., & Ma, H. (2017). Effectively removal of cationic and anionic dyes by pH-sensitive amphoteric adsorbent derived from agricultural waste-wheat straw. Journal of the Taiwan Institute of Chemical Engineers, (76), 65–72. https://doi.org/10.1016/j.jtice.2017.04.010
Liu, Z., Wang, Z., Chen, H., Cai, T., & Liu, Z. (2021). Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas: A critical review. Environmental Pollution, (268), 115910.
Lu, H., Dong, H., Fan, W., Zuo, J., & Li, X. (2017). Aging and behavior of functional TiO2 nanoparticles in aqueous environment. Journal of Hazardous Materials, (325), 113–119.
Luna-Martínez, J. F., Hernández-Uresti, D. B., Reyes-Melo, M. E., Guerrero-Salazar, C. A., González-González, V. A., & Sepúlveda-Guzmán, S. (2011). Synthesis and optical characterization of ZnS–sodium carboxymethyl cellulose nanocomposite films. Carbohydrate Polymers, 84(1), 566–570. https://doi.org/https://doi.org/10.1016/j.carbpol.2010.12.021
Luo, X.-P., Fu, S.-Y., Du, Y.-M., Guo, J.-Z., & Li, B. (2017). Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101. Microporous and Mesoporous Materials, (237), 268–274.
Lupa, L., Cocheci, L., Pode, R., & Hulka, I. (2018). Phenol adsorption using Aliquat 336 functionalized Zn-Al layered double hydroxide. Separation and Purification Technology, (196), 82–95. https://doi.org/10.1016/j.seppur.2017.10.003
Lyu, H., Gong, Y., Tang, J., Huang, Y., & Wang, Q. (2016). Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide. Environmental Science and Pollution Research, (23), 14472–14488.
Lyu, H., Gong, Y., Tang, J., Huang, Y., & Wang, Q. (2016). Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide. Environmental Science and Pollution Research, (23), 14472–14488.
Mazaheri, H., Ghaedi, M., Hajati, S., Dashtian, K., & Purkait, M. K. (2015). Simultaneous removal of methylene blue and Pb 2+ ions using ruthenium nanoparticle-loaded activated carbon: response surface methodology. RSC Advances, 5(101), 83427–83435.
Meili, L., Lins, P. V, Zanta, C., Soletti, J. I., Ribeiro, L. M. O., Dornelas, C. B., Silva, T. L., & Vieira, M. G. A. (2019). MgAl-LDH/Biochar composites for methylene blue removal by adsorption. Applied Clay Science, (168), 11–20.
Mohan, A. C., & Renjanadevi, B. (2016). Preparation of Zinc Oxide Nanoparticles and its Characterization Using Scanning Electron Microscopy (SEM) and X-Ray Diffraction(XRD). Procedia Technology, (24), 761–766. https://doi.org/https://doi.org/10.1016/j.protcy.2016.05.078
Noshirvani, N., Ghanbarzadeh, B., Mokarram, R. R., Hashemi, M., & Coma, V. (2017). Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles. International Journal of Biological Macromolecules, (99), 530–538. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2017.03.007
Oh, S.-Y., Seo, Y.-D., Ryu, K.-S., Park, D.-J., & Lee, S.-H. (2017). Redox and catalytic properties of biochar-coated zero-valent iron for the removal of nitro explosives and halogenated phenols. Environmental Science: Processes & Impacts, 19(5), 711–719.
Pourbahadini Zarandi, M., Khoshdast, H., Derezareshki, A. and Vahidah Shojaei, V. (2018). Effective removal of cadmium from aqueous environments with a composite of light coal ash and rhamnolipid biosurfactant. Journal of Mineral Resources Engineering. Fifth period, number (3), pages 107 to 126. (inPersian)
Pourbahadini Zarandi, Mehla; Khoshdast, Hamid; Derezareshki, Ismail and Vahidah Shojaei, Vahidah (2018). Effective removal of cadmium from aquatic environments with a composite of light coal ash and rhamnolipid biosurfactant. Journal of Mineral Resources Engineering. Period 5(3). 107-126. (In Persian).
Rahaman, M. H., Islam, M. A., Islam, M. M., Rahman, M. A., & Alam, S. M. N. (2021). Biodegradable composite adsorbent of modified cellulose and chitosan to remove heavy metal ions from aqueous solution. Current Research in Green and Sustainable Chemistry, (4), 100119. https://doi.org/10.1016/J.CRGSC.2021.100119
Raji C, Anirudhan TS. (1997). Chromium (VI) adsorption by sawdust carbon: kinetics and equilibrium. Indian Journal of Chemical Technology.;4(5):228-36.
Ramola, S., Belwal, T., Li, C. J., Wang, Y. Y., Lu, H. H., Yang, S. M., & Zhou, C. H. (2020). Improved lead removal from aqueous solution using novel porous bentonite - and calcite-biochar composite. Science of the Total Environment, (709), 136171. https://doi.org/10.1016/j.scitotenv.2019.136171
Rathod, V., Anupama, A. V., Kumar, R. V., Jali, V. M., & Sahoo, B. (2017). Correlated vibrations of the tetrahedral and octahedral complexes and splitting of the absorption bands in FTIR spectra of Li-Zn ferrites. Vibrational Spectroscopy, (92), 267–272. https://doi.org/10.1016/j.vibspec.2017.08.008
Rauf, N., Ilyas, S., Heryanto, H., Rahmat, R., Fahri, A. N., Rahmi, M. H., & Tahir, D. (2021). The Correlation between Structural and Optical Properties of Zinc Hydroxide Nanoparticle in Supports Photocatalytic Performance. Optical Materials, (112) (December 2020), 110780. https://doi.org/10.1016/j.optmat.2020.110780
Reddy, N. R., Bharagav, U., Shankar, M. V., Reddy, P. M., Reddy, K. R., Shetti, N. P., Alonso-Marroquin, F., Kumari, M. M., Aminabhavi, T. M., & Joo, S. W. (2021). Photocatalytic hydrogen production by ternary heterojunction composites of silver nanoparticles doped FCNT-TiO2. Journal of Environmental Management, (286) (December 2020), 112130. https://doi.org/10.1016/j.jenvman.2021.112130
Rodriguez-Narvaez, O. M., Peralta-Hernandez, J. M., Goonetilleke, A., & Bandala, E. R. (2019). Biochar-supported nanomaterials for environmental applications. Journal of Industrial and Engineering Chemistry, (78), 21–33.
Saffari, M. (2018). Response surface methodological approach for optimizing the removal of cadmium from aqueous solutions using pistachio residues biochar supported / non-supported by nanoscalezero-valent iron. (41), 167–181.
Shan, R., Shi, Y., Gu, J., Wang, Y., & Yuan, H. (2020). Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems. Chinese Journal of Chemical Engineering, 28(5), 1375–1383. https://doi.org/10.1016/j.cjche.2020.02.012
Sharma, H. B., Sarmah, A. K., & Dubey, B. (2020). Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renewable and Sustainable Energy Reviews, (123), 109761.
Shunmuga Sundaram, P., Sangeetha, T., Rajakarthihan, S., Vijayalaksmi, R., Elangovan, A., & Arivazhagan, G. (2020). XRD structural studies on cobalt doped zinc oxide nanoparticles synthesized by coprecipitation method: Williamson-Hall and size-strain plot approaches. Physica B: Condensed Matter, (595), 412342. https://doi.org/https://doi.org/10.1016/j.physb.2020.412342
Siddiqui, S. I., Naushad, M., & Chaudhry, S. A. (2019). Promising prospects of nanomaterials for arsenic water remediation: A comprehensive review. Process Safety and Environmental Protection, (126), 60–97.
Singh, E., Kumar, A., Mishra, R., You, S., Singh, L., Kumar, S., & Kumar, R. (2021). Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution. Bioresource Technology, (320) (October 2020). https://doi.org/10.1016/j.biortech.2020.124278
Stefaniuk, M., Oleszczuk, P., & Ok, Y. S. (2016). Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chemical Engineering Journal, (287), 618–632. https://doi.org/10.1016/J.CEJ.2015.11.046
Sui, X., Huang, X., Wu, Y., Ren, R., Pu, H., Chang, J., Zhou, G., Mao, S., & Chen, J. (2018). Organometallic precursor-derived SnO2/Sn-reduced graphene oxide sandwiched nanocomposite anode with superior lithium storage capacity. ACS Applied Materials & Interfaces, 10(31), 26170–26177.
Sun, S., Yang, J., Li, Y., Wang, K., & Li, X. (2014). Optimizing adsorption of Pb (II) by modified litchi pericarp using the response surface methodology. Ecotoxicology and Environmental Safety, (108), 29–35.
Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, (125), 70–85. https://doi.org/10.1016/j.chemosphere.2014.12.058
Tang, H., Wang, J., Zhang, S., Pang, H., Wang, X., Chen, Z., Li, M., Song, G., Qiu, M., & Yu, S. (2021). Recent advances in nanoscale zero-valent iron-based materials: Characteristics, environmental remediation and challenges. Journal of Cleaner Production, (319), 128641.
Teow, Y. H., & Mohammad, A. W. (2019). New generation nanomaterials for water desalination: A review. Desalination, (451), 2–17.
Van, H. T., Vinh, N. D., Duong, T. M. H., Nguyen, T. B. H., Nguyen, T. T., Tran, T. N. H., Hoang, T. K., Tran, T. P., Nguyen, L. H., & Chu, M. N. (2021). Enhancement of exchangeable Cd and Pb immobilization in contaminated soil using Mg/Al LDH-zeolite as an effective adsorbent. RSC Advances, 11(28), 17007–17019.
Varala, S., Dharanija, B., Satyavathi, B., Rao, V. V. B., & Parthasarathy, R. (2016). New biosorbent based on deoiled karanja seed cake in biosorption studies of Zr (IV): Optimization using Box–Behnken method in response surface methodology with desirability approach. Chemical Engineering Journal, (302), 786–800.
Vunain, E., Mishra, A. K., & Mamba, B. B. (2016). Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review. International Journal of Biological Macromolecules, (86), 570–586. https://doi.org/10.1016/j.ijbiomac.2016.02.005
Wan, Z., Cho, D.-W., Tsang, D. C. W., Li, M., Sun, T., & Verpoort, F. (2019). Concurrent adsorption and micro-electrolysis of Cr (VI) by nanoscale zerovalent iron/biochar/Ca-alginate composite. Environmental Pollution, (247), 410–420.
Wang, M., Hu, S., Wang, Q., Liang, Y., Liu, C., Xu, H., & Ye, Q. (2021a). Enhanced nitrogen and phosphorus adsorption performance and stabilization by novel panda manure biochar modified by CMC stabilized nZVZ composite in aqueous solution: Mechanisms and application potential. Journal of Cleaner Production, (291)(xxxx). https://doi.org/10.1016/j.jclepro.2020.125221
Wang, M., Hu, S., Wang, Q., Liang, Y., Liu, C., Xu, H., & Ye, Q. (2021b). Enhanced nitrogen and phosphorus adsorption performance and stabilization by novel panda manure biochar modified by CMC stabilized nZVZ composite in aqueous solution: Mechanisms and application potential. Journal of Cleaner Production, (291)(xxxx), 125221. https://doi.org/10.1016/j.jclepro.2020.125221
Wang, M., Hu, S., Wang, Q., Liang, Y., Liu, C., Xu, H., & Ye, Q. (2021). Enhanced nitrogen and phosphorus adsorption performance and stabilization by novel panda manure biochar modified by CMC stabilized nZVZ composite in aqueous solution: Mechanisms and application potential. Journal of Cleaner Production, (291)(xxxx). https://doi.org/10.1016/j.jclepro.2020.125221
Wu, J., Wang, T., Shi, N., Min, F., & Pan, W. P. (2022). Hierarchically porous biochar templated by in situ formed ZnO for rapid Pb2+ and Cd2+ adsorption in wastewater: Experiment and molecular dynamics study. Environmental Pollution, (302), 119107. https://doi.org/10.1016/j.envpol.2022.119107
Yan, L., Liu, Y., Zhang, Y., Liu, S., Wang, C., Chen, W., Liu, C., Chen, Z., & Zhang, Y. (2020). ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresource Technology, (297), 122381.
Yang, G.-X., & Jiang, H. (2014). Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Research, 48, 396–405. https://doi.org/https://doi.org/10.1016/j.watres.2013.09.050
Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., Li, X., & Huang, X. (2019). Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials, 9(3). https://doi.org/10.3390/nano9030424
Yao, Y., Gao, B., Chen, J., Zhang, M., Inyang, M., Li, Y., Alva, A., & Yang, L. (2013). Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential. Bioresource Technology, 138, 8–13.
Yu, F., Wang, Y., Xie, Y., Zhang, W., Zhang, J., Meng, X., Xiao, J., & Yang, N. (2020). A microtubular direct carbon solid oxide fuel cell operated on the biochar derived from pepper straw. Energy Technology, 8(3), 1901077.
Zhan, T., Zhang, Y., Yang, Q., Deng, H., Xu, J., & Hou, W. (2016). Ultrathin layered double hydroxide nanosheets prepared from a water-in-ionic liquid surfactant-free microemulsion for phosphate removal from aquatic systems. Chemical Engineering Journal, 302, 459–465. https://doi.org/10.1016/j.cej.2016.05.073
Zhang, H., Xu, F., Xue, J., Chen, S., Wang, J., & Yang, Y. (2020). Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: Behavior and mechanism. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-63000-z
Zhang, M., Gao, B., Yao, Y., & Inyang, M. (2013). Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition. Chemosphere, 92(8), 1042–1047.
Zhang, S., Lyu, H., Tang, J., Song, B., Zhen, M., & Liu, X. (2019). A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water. Chemosphere, (217), 686–694.
Zhang, Y., Qu, J., Yuan, Y., Song, H., Liu, Y., Wang, S., Tao, Y., Zhao, Y., & Li, Z. (2022). Simultaneous scavenging of Cd (II) and Pb (II) from water by sulfide-modified magnetic pinecone-derived hydrochar. Journal of Cleaner Production, (341), 130758.
Zhang, Y., Zhang, W., Zhang, H., & He, D. (2023). Nano-Zero-Valent Zinc-Modified Municipal Sludge Biochar for Phosphorus Removal. Molecules, 28(7). https://doi.org/10.3390/molecules28073231
Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T., & Zhao, D. (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, (100), 245–266.
Zhou, H., Ye, M., Zhao, Y., Baig, S. A., Huang, N., & Ma, M. (2022). Sodium citrate and biochar synergistic improvement of nanoscale zero-valent iron composite for the removal of chromium (Ⅵ) in aqueous solutions. Journal of Environmental Sciences (China), (115), 227–239. https://doi.org/10.1016/j.jes.2021.05.044
Zhou, H., Zhao, Y., Xiang, J., Huang, N., Ali Baig, S., & Hu, D. (2020). Facile improvement of nanoscale zero-valent iron activity with exceptional stability for reduction of Cr (VI). Journal of Environmental Engineering, 146(3), 4020006.
Zhu, Y., Xu, F., Liu, Q., Chen, M., Liu, X., Wang, Y., Sun, Y., & Zhang, L. (2019). Nanomaterials and plants: Positive effects, toxicity and the remediation of metal and metalloid pollution in soil. Science of the Total Environment, (662), 414–421. https://doi.org/10.1016/j.scitotenv.2019.01.234
Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., & Wang, X. (2016). Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environmental Science & Technology, 50(14), 7290–7304.
Zubair, A., Bhatti, H. N., Hanif, M. A., & Shafqat, F. (2008). Kinetic and equilibrium modeling for Cr(III) and Cr(VI) removal from aqueous solutions by Citrus reticulata waste biomass. Water, Air, and Soil Pollution, 191(1–4), 305–318. https://doi.org/10.1007/s11270-008-9626-y