Algethami, J. S., Alhamami, M. A. M., Alqadami, A. A., Melhi, S., & Seliem, A. F. (2023). Adsorptive performance of a new magnetic hydrochar nanocomposite for highly efficient removal of cadmium ions from water: Mechanism, modeling, and reusability studies. Environmental Technology & Innovation, (32), 103404.
Al-Swadi, H. A., Al-Farraj, A. S., Al-Wabel, M. I., Ahmad, M., Ahmad, J., Mousa, M. A., Rafique, M. I., & Usama, M. (2023). Kaolinite-composited biochar and hydrochar as low-cost adsorbents for the removal of cadmium, copper, lead, and zinc from aqueous solutions. Sustainability, 15(22), 15978.
Asfaram, A., Ghaedi, M., Ghezelbash, G. R., Dil, E. A., Tyagi, I., Agarwal, S., & Gupta, V. K. (2016). Biosorption of malachite green by novel biosorbent Yarrowia lipolytica isf7: application of response surface methodology. Journal of Molecular Liquids, (214), 249–258.
Bahrami, M., Broumandnesb, S., Kashkouli, H.A., Farkhian Firouzi, A. and Babaei, A. A. (2011). Removal of cadmium from aqueous solutions using modified magnetite nanoparticles. Period 6(3). 221-232. (inPersian)
Bahrami, Mehdi; Borumandnasab, Saeed; Kashkouli, Haider Ali; Farkhian Firouzi, Ahmed and Babaei, Ali Akbar (2011). Removal of cadmium from aqueous solutions using modified magnetite nanoparticles. Journal of Mineral Resources Engineering. Period 6(3). 221-232. (In Persian).
Cai, C., Xu, J., Deng, N., Dong, X., Tang, H., Liang, Y., Jain, M., Garg, V. K., Kadirvelu, K., Sillanpa, M., Baltrenaite, J. K. E., Xu, X., Cao, X., Zhao, L., Zhao, J. J., Shen, X. J., Domene, X., Alcañiz, J. M., Liao, X., … Chang, J. J. (2019). Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions.
Scientific Reports, 9(1), 1–12.
https://doi.org/10.1038/s41598-019-46234-4
Cai, C., Zhao, M., Yu, Z., Rong, H., & Zhang, C. (2019). Utilization of nanomaterials for in-situ remediation of heavy metal (loid) contaminated sediments: A review. Science of the Total Environment, (662), 205–217.
Chen, D., Wang, X., Wang, X., Feng, K., Su, J., & Dong, J. (2020). The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil.
Science of the Total Environment, (714), 136550.
https://doi.org/10.1016/j.scitotenv.2020.136550
Chen, H., Xu, J., Lin, H., Zhao, X., Shang, J., & Liu, Z. (2021). Arsenic removal via a novel hydrochar from livestock waste co-activated with thiourea and γ-Fe2O3 nanoparticles.
Journal of Hazardous Materials, (419)(June), 126457.
https://doi.org/10.1016/j.jhazmat.2021.126457
Chen, Y., Liang, W., Li, Y., Wu, Y., Chen, Y., Xiao, W., Zhao, L., Zhang, J., & Li, H. (2019). Modification, application and reaction mechanisms of nano-sized iron sulfide particles for pollutant removal from soil and water: A review. Chemical Engineering Journal, (362), 144–159.
Chen, Z., Wei, D., Li, Q., Wang, X., Yu, S., Liu, L., Liu, B., Xie, S., Wang, J., & Chen, D. (2018). Macroscopic and microscopic investigation of Cr (VI) immobilization by nanoscaled zero-valent iron supported zeolite MCM-41 via batch, visual, XPS and EXAFS techniques. Journal of Cleaner Production, (181), 745–752.
Cirtiu, C. M., Raychoudhury, T., Ghoshal, S., & Moores, A. (2011). Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre-and post-grafted with common polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 390(1–3), 95–104.
Deng, J., Liu, Y., Liu, S., Zeng, G., Tan, X., Huang, B., Tang, X., Wang, S., Hua, Q., & Yan, Z. (2017). Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar.
Journal of Colloid and Interface Science, (506), 355–364.
https://doi.org/10.1016/J.JCIS.2017.07.069
Etamed, Gholamreza; Bagheri, Ruholah and Moradi Zaniani, Marzieh (2008). Experimental study of separation of heavy metal ions from aqueous solution by magnetic iron oxide nanoparticles coated with poly(vinyl alcohol). Ministry of Science, Research and Technology - Isfahan University of Technology - Faculty of Chemical Engineering. Master's thesis.
(inPersian) https://elmnet.ir/doc/10526626-85121
Faghihzadeh, F., Anaya, N. M., Schifman, L. A., & Oyanedel-Craver, V. (2016). Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles. Nanotechnology for Environmental Engineering, (1), 1–16.
Fang, J., Gao, B., Chen, J., & Zimmerman, A. R. (2015). Hydrochars derived from plant biomass under various conditions: Characterization and potential applications and impacts.
Chemical Engineering Journal, (267), 253–259.
https://doi.org/10.1016/j.cej.2015.01.026
Fang, J., Gao, B., Chen, J., & Zimmerman, A. R. (2015). Hydrochars derived from plant biomass under various conditions: Characterization and potential applications and impacts.
Chemical Engineering Journal, (267), 253–259.
https://doi.org/10.1016/j.cej.2015.01.026
Gupta, S., Sireesha, S., Sreedhar, I., Patel, C. M., & Anitha, K. L. (2020). Latest trends in heavy metal removal from wastewater by biochar based sorbents.
Journal of Water Process Engineering, (38)(May), 101561.
https://doi.org/10.1016/j.jwpe.2020.101561
Hammo, M. M., Akar, T., Sayin, F., Celik, S., & Akar, S. T. (2021). Efficacy of green waste-derived biochar for lead removal from aqueous systems: Characterization, equilibrium, kinetic and application.
Journal of Environmental Management, (289)(January), 112490.
https://doi.org/10.1016/j.jenvman.2021.112490
He, D., Ma, X., Jones, A. M., Ho, L., & Waite, T. D. (2016). Mechanistic and kinetic insights into the ligand-promoted depassivation of bimetallic zero-valent iron nanoparticles. Environmental Science: Nano, 3(4), 737–744.
Henriques, B., Coppola, F., Monteiro, R., Pinto, J., Viana, T., Pretti, C., Soares, A., Freitas, R., & Pereira, E. (2019). Toxicological assessment of anthropogenic Gadolinium in seawater: Biochemical effects in mussels Mytilus galloprovincialis. Science of the Total Environment, (664), 626–634.
Inyang, M., Gao, B., Pullammanappallil, P., Ding, W., & Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 101(22), 8868–8872.
Iqbal, J., Shah, N. S., Sayed, M., Niazi, N. K., Imran, M., Khan, J. A., Khan, Z. U. H., Hussien, A. G. S., Polychronopoulou, K., & Howari, F. (2021). Nano-zerovalent manganese/biochar composite for the adsorptive and oxidative removal of Congo-red dye from aqueous solutions.
Journal of Hazardous Materials, (403)(May 2020), 123854.
https://doi.org/10.1016/j.jhazmat.2020.123854
Ismadji, S., Tong, D. S., Soetaredjo, F. E., Ayucitra, A., Yu, W. H., & Zhou, C. H. (2016). Bentonite hydrochar composite for removal of ammonium from Koi fish tank. Applied Clay Science, (119), 146–154.
Jain, M., Garg, V. K., & Kadirvelu, K. (2011). Investigation of Cr (VI) adsorption onto chemically treated Helianthus annuus: optimization using response surface methodology. Bioresource Technology, 102(2), 600–605.
Ji, Y., Zheng, N., An, Q., Sun, S., Wang, S., Li, X., Li, P., Hua, X., Dong, D., Zhao, C., Li, Z., & Zhang, W. (2022). The effect of carbonization temperature on the capacity and mechanisms of Cd(II)-Pb(II) mix-ions adsorption by wood ear mushroom sticks derived biochar.
Ecotoxicology and Environmental Safety, (239)(January), 113646.
https://doi.org/10.1016/j.ecoenv.2022.113646
Jiang, D., Zeng, G., Huang, D., Chen, M., Zhang, C., Huang, C., & Wan, J. (2018). Remediation of contaminated soils by enhanced nanoscale zero valent iron. Environmental Research, (163), 217–227.
Kabir, E., Kumar, V., Kim, K.-H., Yip, A. C. K., & Sohn, J. R. (2018). Environmental impacts of nanomaterials. Journal of Environmental Management, (225), 261–271.
Karunanayake, A. G., Todd, O. A., Crowley, M., Ricchetti, L., Pittman Jr, C. U., Anderson, R., Mohan, D., & Mlsna, T. (2018). Lead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas fir. Chemical Engineering Journal, (331), 480–491.
Khulbe, K. C., & Matsuura, T. (2018). Removal of heavy metals and pollutants by membrane adsorption techniques. Applied Water Science, (8), 1–30.
Kong, X., Liu, Y., Pi, J., Li, W., Liao, Q. J., & Shang, J. (2017). Low-cost magnetic herbal biochar: characterization and application for antibiotic removal.
Environmental Science and Pollution Research, 24(7), 6679–6687.
https://doi.org/10.1007/s11356-017-8376-z
Krishnan KA, Anirudhan TS. (2003). Removal of cad - mium (II) from aqueos solutions by steam-activated sulphurised carbon prepared from sugar – cane ba - gasse pith: kinetics and equilibrium studies. Water Research.;29(2):147-56.
Lee, H. S., & Shin, H. S. (2021). Competitive adsorption of heavy metals onto modified biochars: Comparison of biochar properties and modification methods.
Journal of Environmental Management, (299)(August), 113651.
https://doi.org/10.1016/j.jenvman.2021.113651
Li, B., Guo, J., Lv, K., & Fan, J. (2019). Adsorption of methylene blue and Cd (II) onto maleylated modified hydrochar from water. Environmental Pollution, (254), 113014.
Li, D., Cui, H., Cheng, Y., Xue, L., Wang, B., He, H., Hua, Y., Chu, Q., Feng, Y., & Yang, L. (2021). Chemical aging of hydrochar improves the Cd2+ adsorption capacity from aqueous solution. Environmental Pollution, (287), 117562.
Li, R., Wang, J. J., Gaston, L. A., Zhou, B., Li, M., Xiao, R., Wang, Q., Zhang, Z., Huang, H., & Liang, W. (2018). An overview of carbothermal synthesis of metal–biochar composites for the removal of oxyanion contaminants from aqueous solution. Carbon, (129), 674–687.
Liang, J., Li, X., Yu, Z., Zeng, G., Luo, Y., Jiang, L., Yang, Z., Qian, Y., & Wu, H. (2017). Amorphous MnO2 Modified Biochar Derived from Aerobically Composted Swine Manure for Adsorption of Pb(II) and Cd(II).
ACS Sustainable Chemistry and Engineering, 5(6), 5049–5058.
https://doi.org/10.1021/acssuschemeng.7b00434
Lim, J. Y., Mubarak, N. M., Abdullah, E. C., Nizamuddin, S., Khalid, M., & Inamuddin. (2018). Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — A review.
Journal of Industrial and Engineering Chemistry, (66), 29–44.
https://doi.org/10.1016/j.jiec.2018.05.028
Lin, Q., Wang, K., Gao, M., Bai, Y., Chen, L., & Ma, H. (2017). Effectively removal of cationic and anionic dyes by pH-sensitive amphoteric adsorbent derived from agricultural waste-wheat straw.
Journal of the Taiwan Institute of Chemical Engineers, (76), 65–72.
https://doi.org/10.1016/j.jtice.2017.04.010
Liu, Z., Wang, Z., Chen, H., Cai, T., & Liu, Z. (2021). Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas: A critical review. Environmental Pollution, (268), 115910.
Lu, H., Dong, H., Fan, W., Zuo, J., & Li, X. (2017). Aging and behavior of functional TiO2 nanoparticles in aqueous environment. Journal of Hazardous Materials, (325), 113–119.
Luna-Martínez, J. F., Hernández-Uresti, D. B., Reyes-Melo, M. E., Guerrero-Salazar, C. A., González-González, V. A., & Sepúlveda-Guzmán, S. (2011). Synthesis and optical characterization of ZnS–sodium carboxymethyl cellulose nanocomposite films.
Carbohydrate Polymers, 84(1), 566–570.
https://doi.org/https://doi.org/10.1016/j.carbpol.2010.12.021
Luo, X.-P., Fu, S.-Y., Du, Y.-M., Guo, J.-Z., & Li, B. (2017). Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101. Microporous and Mesoporous Materials, (237), 268–274.
Lupa, L., Cocheci, L., Pode, R., & Hulka, I. (2018). Phenol adsorption using Aliquat 336 functionalized Zn-Al layered double hydroxide.
Separation and Purification Technology, (196), 82–95.
https://doi.org/10.1016/j.seppur.2017.10.003
Lyu, H., Gong, Y., Tang, J., Huang, Y., & Wang, Q. (2016). Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide. Environmental Science and Pollution Research, (23), 14472–14488.
Lyu, H., Gong, Y., Tang, J., Huang, Y., & Wang, Q. (2016). Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide. Environmental Science and Pollution Research, (23), 14472–14488.
Mazaheri, H., Ghaedi, M., Hajati, S., Dashtian, K., & Purkait, M. K. (2015). Simultaneous removal of methylene blue and Pb 2+ ions using ruthenium nanoparticle-loaded activated carbon: response surface methodology. RSC Advances, 5(101), 83427–83435.
Meili, L., Lins, P. V, Zanta, C., Soletti, J. I., Ribeiro, L. M. O., Dornelas, C. B., Silva, T. L., & Vieira, M. G. A. (2019). MgAl-LDH/Biochar composites for methylene blue removal by adsorption. Applied Clay Science, (168), 11–20.
Noshirvani, N., Ghanbarzadeh, B., Mokarram, R. R., Hashemi, M., & Coma, V. (2017). Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles.
International Journal of Biological Macromolecules, (99), 530–538.
https://doi.org/https://doi.org/10.1016/j.ijbiomac.2017.03.007
Oh, S.-Y., Seo, Y.-D., Ryu, K.-S., Park, D.-J., & Lee, S.-H. (2017). Redox and catalytic properties of biochar-coated zero-valent iron for the removal of nitro explosives and halogenated phenols. Environmental Science: Processes & Impacts, 19(5), 711–719.
Pourbahadini Zarandi, M., Khoshdast, H., Derezareshki, A. and Vahidah Shojaei, V. (2018). Effective removal of cadmium from aqueous environments with a composite of light coal ash and rhamnolipid biosurfactant. Journal of Mineral Resources Engineering. Fifth period, number (3), pages 107 to 126. (inPersian)
Pourbahadini Zarandi, Mehla; Khoshdast, Hamid; Derezareshki, Ismail and Vahidah Shojaei, Vahidah (2018). Effective removal of cadmium from aquatic environments with a composite of light coal ash and rhamnolipid biosurfactant. Journal of Mineral Resources Engineering. Period 5(3). 107-126. (In Persian).
Rahaman, M. H., Islam, M. A., Islam, M. M., Rahman, M. A., & Alam, S. M. N. (2021). Biodegradable composite adsorbent of modified cellulose and chitosan to remove heavy metal ions from aqueous solution.
Current Research in Green and Sustainable Chemistry, (4), 100119.
https://doi.org/10.1016/J.CRGSC.2021.100119
Raji C, Anirudhan TS. (1997). Chromium (VI) adsorption by sawdust carbon: kinetics and equilibrium. Indian Journal of Chemical Technology.;4(5):228-36.
Ramola, S., Belwal, T., Li, C. J., Wang, Y. Y., Lu, H. H., Yang, S. M., & Zhou, C. H. (2020). Improved lead removal from aqueous solution using novel porous bentonite - and calcite-biochar composite.
Science of the Total Environment, (709), 136171.
https://doi.org/10.1016/j.scitotenv.2019.136171
Rathod, V., Anupama, A. V., Kumar, R. V., Jali, V. M., & Sahoo, B. (2017). Correlated vibrations of the tetrahedral and octahedral complexes and splitting of the absorption bands in FTIR spectra of Li-Zn ferrites.
Vibrational Spectroscopy, (92), 267–272.
https://doi.org/10.1016/j.vibspec.2017.08.008
Rauf, N., Ilyas, S., Heryanto, H., Rahmat, R., Fahri, A. N., Rahmi, M. H., & Tahir, D. (2021). The Correlation between Structural and Optical Properties of Zinc Hydroxide Nanoparticle in Supports Photocatalytic Performance.
Optical Materials, (112) (December 2020), 110780.
https://doi.org/10.1016/j.optmat.2020.110780
Reddy, N. R., Bharagav, U., Shankar, M. V., Reddy, P. M., Reddy, K. R., Shetti, N. P., Alonso-Marroquin, F., Kumari, M. M., Aminabhavi, T. M., & Joo, S. W. (2021). Photocatalytic hydrogen production by ternary heterojunction composites of silver nanoparticles doped FCNT-TiO2
. Journal of Environmental Management, (286) (December 2020), 112130.
https://doi.org/10.1016/j.jenvman.2021.112130
Rodriguez-Narvaez, O. M., Peralta-Hernandez, J. M., Goonetilleke, A., & Bandala, E. R. (2019). Biochar-supported nanomaterials for environmental applications. Journal of Industrial and Engineering Chemistry, (78), 21–33.
Saffari, M. (2018). Response surface methodological approach for optimizing the removal of cadmium from aqueous solutions using pistachio residues biochar supported / non-supported by nanoscalezero-valent iron. (41), 167–181.
Shan, R., Shi, Y., Gu, J., Wang, Y., & Yuan, H. (2020). Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems.
Chinese Journal of Chemical Engineering, 28(5), 1375–1383.
https://doi.org/10.1016/j.cjche.2020.02.012
Sharma, H. B., Sarmah, A. K., & Dubey, B. (2020). Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renewable and Sustainable Energy Reviews, (123), 109761.
Shunmuga Sundaram, P., Sangeetha, T., Rajakarthihan, S., Vijayalaksmi, R., Elangovan, A., & Arivazhagan, G. (2020). XRD structural studies on cobalt doped zinc oxide nanoparticles synthesized by coprecipitation method: Williamson-Hall and size-strain plot approaches. Physica B:
Condensed Matter, (595), 412342.
https://doi.org/https://doi.org/10.1016/j.physb.2020.412342
Siddiqui, S. I., Naushad, M., & Chaudhry, S. A. (2019). Promising prospects of nanomaterials for arsenic water remediation: A comprehensive review. Process Safety and Environmental Protection, (126), 60–97.
Singh, E., Kumar, A., Mishra, R., You, S., Singh, L., Kumar, S., & Kumar, R. (2021). Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution.
Bioresource Technology, (320) (October 2020).
https://doi.org/10.1016/j.biortech.2020.124278
Stefaniuk, M., Oleszczuk, P., & Ok, Y. S. (2016). Review on nano zerovalent iron (nZVI): From synthesis to environmental applications.
Chemical Engineering Journal, (287), 618–632.
https://doi.org/10.1016/J.CEJ.2015.11.046
Sui, X., Huang, X., Wu, Y., Ren, R., Pu, H., Chang, J., Zhou, G., Mao, S., & Chen, J. (2018). Organometallic precursor-derived SnO2/Sn-reduced graphene oxide sandwiched nanocomposite anode with superior lithium storage capacity. ACS Applied Materials & Interfaces, 10(31), 26170–26177.
Sun, S., Yang, J., Li, Y., Wang, K., & Li, X. (2014). Optimizing adsorption of Pb (II) by modified litchi pericarp using the response surface methodology. Ecotoxicology and Environmental Safety, (108), 29–35.
Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions.
Chemosphere, (125), 70–85.
https://doi.org/10.1016/j.chemosphere.2014.12.058
Tang, H., Wang, J., Zhang, S., Pang, H., Wang, X., Chen, Z., Li, M., Song, G., Qiu, M., & Yu, S. (2021). Recent advances in nanoscale zero-valent iron-based materials: Characteristics, environmental remediation and challenges. Journal of Cleaner Production, (319), 128641.
Teow, Y. H., & Mohammad, A. W. (2019). New generation nanomaterials for water desalination: A review. Desalination, (451), 2–17.
Van, H. T., Vinh, N. D., Duong, T. M. H., Nguyen, T. B. H., Nguyen, T. T., Tran, T. N. H., Hoang, T. K., Tran, T. P., Nguyen, L. H., & Chu, M. N. (2021). Enhancement of exchangeable Cd and Pb immobilization in contaminated soil using Mg/Al LDH-zeolite as an effective adsorbent. RSC Advances, 11(28), 17007–17019.
Varala, S., Dharanija, B., Satyavathi, B., Rao, V. V. B., & Parthasarathy, R. (2016). New biosorbent based on deoiled karanja seed cake in biosorption studies of Zr (IV): Optimization using Box–Behnken method in response surface methodology with desirability approach. Chemical Engineering Journal, (302), 786–800.
Vunain, E., Mishra, A. K., & Mamba, B. B. (2016). Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review.
International Journal of Biological Macromolecules, (86), 570–586.
https://doi.org/10.1016/j.ijbiomac.2016.02.005
Wan, Z., Cho, D.-W., Tsang, D. C. W., Li, M., Sun, T., & Verpoort, F. (2019). Concurrent adsorption and micro-electrolysis of Cr (VI) by nanoscale zerovalent iron/biochar/Ca-alginate composite. Environmental Pollution, (247), 410–420.
Wang, M., Hu, S., Wang, Q., Liang, Y., Liu, C., Xu, H., & Ye, Q. (2021a). Enhanced nitrogen and phosphorus adsorption performance and stabilization by novel panda manure biochar modified by CMC stabilized nZVZ composite in aqueous solution: Mechanisms and application potential. J
ournal of Cleaner Production, (291)(xxxx).
https://doi.org/10.1016/j.jclepro.2020.125221
Wang, M., Hu, S., Wang, Q., Liang, Y., Liu, C., Xu, H., & Ye, Q. (2021b). Enhanced nitrogen and phosphorus adsorption performance and stabilization by novel panda manure biochar modified by CMC stabilized nZVZ composite in aqueous solution: Mechanisms and application potential.
Journal of Cleaner Production, (291)(xxxx), 125221.
https://doi.org/10.1016/j.jclepro.2020.125221
Wang, M., Hu, S., Wang, Q., Liang, Y., Liu, C., Xu, H., & Ye, Q. (2021). Enhanced nitrogen and phosphorus adsorption performance and stabilization by novel panda manure biochar modified by CMC stabilized nZVZ composite in aqueous solution: Mechanisms and application potential.
Journal of Cleaner Production, (291)(xxxx).
https://doi.org/10.1016/j.jclepro.2020.125221
Wu, J., Wang, T., Shi, N., Min, F., & Pan, W. P. (2022). Hierarchically porous biochar templated by in situ formed ZnO for rapid Pb2+ and Cd2+ adsorption in wastewater: Experiment and molecular dynamics study.
Environmental Pollution, (302), 119107.
https://doi.org/10.1016/j.envpol.2022.119107
Yan, L., Liu, Y., Zhang, Y., Liu, S., Wang, C., Chen, W., Liu, C., Chen, Z., & Zhang, Y. (2020). ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresource Technology, (297), 122381.
Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., Li, X., & Huang, X. (2019). Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials, 9(3).
https://doi.org/10.3390/nano9030424
Yao, Y., Gao, B., Chen, J., Zhang, M., Inyang, M., Li, Y., Alva, A., & Yang, L. (2013). Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential. Bioresource Technology, 138, 8–13.
Yu, F., Wang, Y., Xie, Y., Zhang, W., Zhang, J., Meng, X., Xiao, J., & Yang, N. (2020). A microtubular direct carbon solid oxide fuel cell operated on the biochar derived from pepper straw. Energy Technology, 8(3), 1901077.
Zhan, T., Zhang, Y., Yang, Q., Deng, H., Xu, J., & Hou, W. (2016). Ultrathin layered double hydroxide nanosheets prepared from a water-in-ionic liquid surfactant-free microemulsion for phosphate removal from aquatic systems. Chemical Engineering Journal, 302, 459–465.
https://doi.org/10.1016/j.cej.2016.05.073
Zhang, H., Xu, F., Xue, J., Chen, S., Wang, J., & Yang, Y. (2020). Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: Behavior and mechanism.
Scientific Reports, 10(1), 1–13.
https://doi.org/10.1038/s41598-020-63000-z
Zhang, M., Gao, B., Yao, Y., & Inyang, M. (2013). Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition. Chemosphere, 92(8), 1042–1047.
Zhang, S., Lyu, H., Tang, J., Song, B., Zhen, M., & Liu, X. (2019). A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water. Chemosphere, (217), 686–694.
Zhang, Y., Qu, J., Yuan, Y., Song, H., Liu, Y., Wang, S., Tao, Y., Zhao, Y., & Li, Z. (2022). Simultaneous scavenging of Cd (II) and Pb (II) from water by sulfide-modified magnetic pinecone-derived hydrochar. Journal of Cleaner Production, (341), 130758.
Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T., & Zhao, D. (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, (100), 245–266.
Zhou, H., Ye, M., Zhao, Y., Baig, S. A., Huang, N., & Ma, M. (2022). Sodium citrate and biochar synergistic improvement of nanoscale zero-valent iron composite for the removal of chromium (Ⅵ) in aqueous solutions.
Journal of Environmental Sciences (China), (115), 227–239.
https://doi.org/10.1016/j.jes.2021.05.044
Zhou, H., Zhao, Y., Xiang, J., Huang, N., Ali Baig, S., & Hu, D. (2020). Facile improvement of nanoscale zero-valent iron activity with exceptional stability for reduction of Cr (VI). Journal of Environmental Engineering, 146(3), 4020006.
Zhu, Y., Xu, F., Liu, Q., Chen, M., Liu, X., Wang, Y., Sun, Y., & Zhang, L. (2019). Nanomaterials and plants: Positive effects, toxicity and the remediation of metal and metalloid pollution in soil.
Science of the Total Environment, (662), 414–421.
https://doi.org/10.1016/j.scitotenv.2019.01.234
Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., & Wang, X. (2016). Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environmental Science & Technology, 50(14), 7290–7304.
Zubair, A., Bhatti, H. N., Hanif, M. A., & Shafqat, F. (2008). Kinetic and equilibrium modeling for Cr(III) and Cr(VI) removal from aqueous solutions by Citrus reticulata waste biomass.
Water, Air, and Soil Pollution, 191(1–4), 305–318.
https://doi.org/10.1007/s11270-008-9626-y