بررسی پارامترهای جریان عبوری در سرریز شوت با استفاده از نرم‌افزار FLOW-3D

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی آب، دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران

چکیده

در پژوهش حاضر مشخصه‌های هیدرولیکی جریان از جمله سرعت، فشار جریان و اندیس کاویتاسیون در دبی‌های مختلف ورودی با استفاده از نرم‌افزار FLOW-3D بررسی شده است. نتایج نشان داد که با عبور جریان از روی سرریز اوجی سرعت در مسیر جریان افزایش یافته و در قسمت شوت این افزایش با شیب ملایمی به روند خود ادامه می‌دهد. به‌دلیل شیب تند قسمت تندآب، حداکثر مقدار سرعت جریان در این قسمت رخ داده و نهایتاً با ورود به قسمت حوضچه آرامش انرژی دینامیکی جریان مستهلک و به انرژی پتانسیل تبدیل می‏شود. مقادیر فشار جریان در راستای طولی سرریز نشان داد که مقدار این پارامتر با حرکت از بالادست به پائین‌دست به‏دلیل افزایش سرعت جریان، کاهش می‌یابد و بیشترین کاهش در قسمت انتهایی تندآب رخ می‌دهد. بیشترین مقدار سرعت جریان به‌ازای دبی‌های ورودی 300 (دبی مینیمم طراحی)، 830 (دبی سیلاب 10000) و 2270 (حداکثر دبی محتمل) مترمکعب بر ثانیه برابر با 25/34، 80/41 و 90/44 متر بر ثانیه بوده که در قسمت انتهایی تندآب به دست آمد. همچنین کمترین مقدار فشار جریان به‌ازای دبی‌های مذکور به‌ترتیب برابر 23/1، 52/1 و 9/5- کیلو پاسکال به‌دست آمد. بررسی اندیس کاویتاسیون بر روی کف مجرا نشان داد که کف مجرای سرریز به‌ازای تمامی دبی‌های ورودی در قسمت تندآب با وقوع پدیده کاویتاسیون مواجه می‌گردد. بررسی اندیس کاویتاسیون بر روی دیواره‌های جانبی نشان داد که دیواره‌های قسمت‌های سرریز اوجی، سرریز شوت و بخش‌های ابتدایی تندآب از وقوع پدیده کاویتاسیون در امان هستند. این درحالی است که اندیس کاویتاسیون در قسمت‌های انتهایی تندآب به کم‌تر از مقدار بحرانی 2/0 کاهش می‌یابد. بنابراین، برای اجتناب از وقوع پدیده مخرب کاویتاسیون در این ناحیه، روش هوادهی از کف و دیواره‏های مجرا توصیه می‏شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Flow Parameters in a Chute Spillway Using FLOW-3D Software

نویسندگان [English]

  • Mahdi Tabrizchi
  • Yousef Hassanzadeh
  • Mohammad Taghi Aalami
  • Hamidreza Abbaszadeh
Department of Water Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
چکیده [English]

This study investigates the hydraulic characteristics of flow, including flow velocity, pressure, and cavitation index, at various inflow rates using FLOW-3D. The results indicate that as flow passes over the ogee spillway, the flow velocity increases, and this upward trend continues gradually along the chute section. Due to the steep slope of the chute section, the maximum flow velocity occurs here and is eventually dissipated upon entering the stilling basin, where dynamic energy is absorbed. Longitudinal pressure distribution along the spillway reveals a reduction in pressure from upstream to downstream, with the most significant decrease occurring at the downstream end of the chute. The maximum flow velocities at inflow rates of 300 (minimum design discharge), 830 (10,000-year flood discharge), and 2270 m³/s (maximum probable flood, P.M.F.) were recorded as 34.25, 41.80, and 44.90 m/s, respectively, at the downstream end of the chute. Additionally, the minimum flow pressures for these discharge rates were 1.23, 1.52, and -5.9 kPa, respectively. Examination of the cavitation index along the channel bed indicated that cavitation occurs in the chute section under all inflow conditions. However, the cavitation index assessment on the sidewalls showed that the ogee, chute, and initial sections of the chute sidewalls remain unaffected by cavitation. Conversely, the cavitation index in the downstream chute sections decreases below the critical threshold, indicating potential cavitation risk in these regions. Therefore, to prevent the occurrence of the destructive cavitation phenomenon, the implement of flow aeration method from the floor and sidewalls of the channel is recommended.

کلیدواژه‌ها [English]

  • Cavitation index
  • Flow pressure
  • Flow velocity
  • Spillway
  • VOF

EXTENDED ABSTRACT

Introduction

The present study investigates the hydraulic performance of the Nazlu Dam spillway in West Azerbaijan, Iran, with a focus on key parameters such as flow velocity, pressure distribution, and cavitation index. Due to the high velocities involved and the steep slope of the spillway chute, the structure faces a potential risk of cavitation— a phenomenon that can damage the spillway by causing erosion or pitting on concrete surfaces. Cavitation occurs when water pressures fall below the vapor pressure, leading to vapor bubble formation and subsequent collapse, which can cause severe structural damage over time. Using FLOW-3D, a computational fluid dynamics (CFD) tool, this research aims to simulate the spillway’s hydraulic behavior under various flow conditions, assessing potential risk areas for cavitation and proposing solutions for damage mitigation. This research is particularly relevant given the dam’s importance in regional water resource management, serving irrigation, potable water, and industrial needs.

Materials and Methods

The Nazlu Dam spillway includes an ogee crest, a convergent channel, a steeply sloped chute, and a stilling basin designed for energy dissipation. The study uses FLOW-3D software to simulate the behavior of water flow over this structure. The Volume of Fluid (VOF) method is applied to capture the free surface dynamics of water flow, while the RNG k-ε turbulence model is employed to simulate turbulent flow behavior accurately. Simulations are conducted for a range of discharge rates, from the minimum design flow to the maximum probable flood, to evaluate hydraulic performance under different conditions. Boundary conditions are defined based on these flow rates, with inlet and outlet conditions specified for accurate modeling. The spillway geometry is meshed carefully to capture detailed hydraulic characteristics, allowing for precise simulation of flow velocity, pressure, and cavitation indices across the structure.

Results and Discussion

Simulation results show a notable increase in flow velocity as water progresses from the ogee crest to the chute section, reaching its peak in the steepest portion of the spillway. This peak velocity corresponds to a marked decrease in pressure, particularly toward the downstream end of the chute, as predicted by Bernoulli's principle. The cavitation index—calculated based on velocity and pressure distributions—reveals that the downstream chute and the entrance of the stilling basin are particularly prone to cavitation under high-flow scenarios, especially during maximum flood conditions. The lowest cavitation indices fall below the critical threshold, indicating a high probability of cavitation in these regions.

To address the risk of cavitation damage, aeration is suggested as a preventive measure. Aeration involves introducing air into the flow, which can help maintain higher pressures along the chute, reducing the likelihood of cavitation. This practice is widely recognized in hydraulic engineering as an effective method to mitigate cavitation damage. Introducing air bubbles into the flow acts as a buffer by absorbing energy and keeping pressures above the vaporization threshold, thus protecting the spillway surface.

Conclusion

The FLOW-3D simulations conducted in this study provide a detailed evaluation of hydraulic parameters along the Nazlu Dam spillway, identifying regions vulnerable to cavitation. The analysis indicates that high velocities and low pressures in certain sections of the chute heighten the risk of cavitation, with potential for structural damage in high-flow conditions. The study recommends aeration techniques, such as air injection, to mitigate cavitation risks, particularly at high discharge rates. Implementing these measures will help preserve the structural integrity of the spillway over the long term, safeguarding the dam’s role in critical water resource management for the region.

The insights derived from this study serve as valuable guidelines for spillway design and maintenance, particularly for structures exposed to extreme hydraulic loads. These findings underscore the need for regular monitoring and proactive maintenance to manage cavitation risks effectively and ensure the safety and durability of dam spillways.

Author Contributions:

Conceptualization, Mahdi Tabrizchi, Yousef Hassanzadeh and Mohammad Taghi Aalami; methodology, Mahdi Tabrizchi, Yousef Hassanzadeh and Mohammad Taghi Aalami; software, Mahdi Tabrizchi; validation, Mahdi Tabrizchi, Yousef Hassanzadeh and Mohammad Taghi Aalami; formal analysis, Mahdi Tabrizchi, Yousef Hassanzadeh, Mohammad Taghi Aalami and Hamidreza Abbaszadeh; investigation, Mahdi Tabrizchi, Yousef Hassanzadeh, Mohammad Taghi Aalami and Hamidreza Abbaszadeh; resources, Mahdi Tabrizchi, Yousef Hassanzadeh, Mohammad Taghi Aalami and Hamidreza Abbaszadeh; data curation, Mahdi Tabrizchi; writing—original draft preparation, Mahdi Tabrizchi, Yousef Hassanzadeh and Hamidreza Abbaszadeh; writing—review and editing, Mahdi Tabrizchi, Yousef Hassanzadeh and Hamidreza Abbaszadeh; supervision, Yousef Hassanzadeh; project administration, Yousef Hassanzadeh and Mohammad Taghi Aalami; All authors have read and agreed to the published version of the manuscript. All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement:

Data available on request from the authors.

Ethical considerations:

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest:

The author declares no conflict of interest.

Abbaszadeh, H., Norouzi, R., Sume, V., Kuriqi, A., Daneshfaraz, R., & Abraham, J. (2023). Sill role effect on the flow characteristics (experimental and regression model analytical). Fluids, 8(8), 235.
Abbaszadeh, H., Daneshfaraz, R., Sume, V., & Abraham, J. (2024). Experimental investigation and application of soft computing models for predicting flow energy loss in arc-shaped constrictions. AQUA—Water Infrastructure, Ecosystems and Society, 73(3), 637-661.
Anonymous, (2007). The final report of studies on the hydraulic model of the Nazlo Dam flood discharge system. Water Research Institute of Energy Ministry, Tehran, Iran
Chakib, B. (2013). Numerical computation of inception point location for flat-sloped stepped spillway. International Journal of Hydraulic Engineering, 2(3), 47-52.
Chanson, H. (1997). Measuring air-water interface area in supercritical open channel flow. Water research, 31(6), 1414-1420.
Chen, Q., Dai, G., & Liu, H. (2002). Volume of fluid model for turbulence numerical simulation of stepped spillway overflow. Journal of Hydraulic Engineering, 128(7), 683-688.
Chinnarasri, C., Kositgittiwong, D., & Julien, P. Y. (2014, March). Model of flow over spillways by computational fluid dynamics. In Proceedings of the Institution of Civil Engineers-Water Management, 167(3), 164-175.
Daneshfaraz, R., Norouzi, R., Abbaszadeh, H., Kuriqi, A., & Di Francesco, S. (2022a). Influence of sill on the hydraulic regime in sluice gates: an experimental and numerical analysis. Fluids, 7(7), 244.
Daneshfaraz, R., Norouzi, R., & Ebadzadeh, P. (2022b). Experimental and numerical study of sluice gate flow pattern with non- suppressed sill and its effect on discharge coefficient in free-flow conditions. Journal of Hydraulic Structures8(1), 1-20.
Daneshfaraz R, Norouzi R, Ebadzadeh P, Kuriqi A, (2023). Influence of sill integration in labyrinth sluice gate hydraulic performance. Innovative Infrastructure Solutions, 8(4), 118.
Dargahi, B. (2006). Experimental study and 3D numerical simulations for a free-overflow spillway. Journal of Hydraulic Engineering, 132(9), 899-907.
Dong, Z. Y., Chen, L., & Ju, W. J. (2007). Cavitation characteristics of high velocity flow with and without aeration on the order of 50 m/s. Journal of Hydrodynamics, 19(4), 429-433.
Eghbalzadeh, A., & Javan, M. (2012). Comparison of mixture and VOF models for numerical simulation of air–entrainment in skimming flow over stepped spillways. Procedia engineering, 28, 657-660.
Falvey, H. T. (1990). Cavitation in chutes and spillways. Engineering Monograph 42. Water Resources Technical Publication. US Printing Office. Bureau of Reclamation. Denver.
Hasanzadeh Vaighan, V., Hasanzadeh, Y., Hasan Zadeh Dalir, A., & Abdi Kardani, A. (2015). Investigation of cavitation phenomenon on Vanyar dam’s spillway using the FLUENT numerical model. Iranian Water Researches Journal, 9(3), 177-180. (in Persian)
Hassanzadeh, Y., & Abbaszadeh, H. (2023). Investigating discharge coefficient of slide gate-sill combination using expert soft computing models. Journal of Hydraulic Structures, 9(1), 63-80.
Hassanzadeh, Y., Abbaszadeh, H., Abedi, A., & Abraham, J. (2024). Numerical simulation of the effect of downstream material on scouring-sediment profile of combined spillway-gate. AQUA—Water Infrastructure, Ecosystems and Society, jws2024360.
Jamali, T., Manafpour, M., & Ebrahimnezhadian, H. (2023). Evolution of pressure and cavitation in transition region walls for supercritical flow. AQUA—Water Infrastructure, Ecosystems and Society, 72(1), 62-82.
Jan, C. D., Chang, C. J., Lai, J. S., & Guo, W. D. (2009). Characteristics of Hydraulic Shock Waves in an Inclined Chute Contraction-Experiments. Journal of Mechanics, 25(2), 129-136.
Kermani, E. F., Barani, G. A., & Ghaeini-Hessaroeyeh, M. (2013). Investigation of cavitation damage levels on spillways. World Applied Sciences Journal, 21(1), 73-78.
Luna-Bahena, J. C., Pozos-Estrada, O., Ortiz-Martínez, V. M., & Gracia-Sánchez, J. (2018). Experimental investigation of artificial aeration on a smooth spillway with a crest pier. Water, 10(10), 1383.
Pfister, M. (2011). Chute aerators: Steep deflectors and cavity subpressure. Journal of hydraulic engineering, 137(10), 1208-1215.
Pfister, M., & Hager, W. H. (2010). Chute aerators. I: Air transport characteristics. Journal of Hydraulic Engineering, 136(6), 352-359.
Pfister, M., Lucas, J., & Hager, W. H. (2011). Chute aerators: preaerated approach flow. Journal of Hydraulic Engineering, 137(11), 1452-1461.
Pirboudaghi, S., Khalilzadeh, GH., & Hassanzadeh, Y. (2023). Numerical investigation of cavitation phenomenon in Aghchai dam spillway by VOF method and Flow-3D software. Journal of Mechanical Engineering, 52(4), 135-144. (in Persian)
Ruan, S. P., Wu, J. H., Wu, W. W., & Xi, R. Z. (2007). Hydraulic research of aerators on tunnel spillways. Journal of Hydrodynamics, Ser. B, 19(3), 330-334.
Süme, V., Daneshfaraz, R., Kerim, A., Abbaszadeh, H., & Abraham, J. (2024). Investigation of clean energy production in drinking water networks. Water Resources Management, 38(6), 2189-2208.
Zhenwei, M. U., Zhiyan, Z., & Tao, Z. H. A. O. (2012). Numerical simulation of 3-D flow field of spillway based on VOF method. Procedia Engineering, 28, 808-812.