Abdi, K., Kamyabi, S., & Zand Moghaddam, M. R. (2019). Integrated Assessment of Vulnerability, Resiliency and Spatial Risk against Flooding in Sari City. Physical Geography Research, 51(3), 431-445. doi: 10.22059/jphgr.2019.272801.1007324. (In Persian).
Abdul-Razak, M., & Kruse, S. (2017). The adaptive capacity of smallholder farmers to climate change in the Northern Region of Ghana. Climate Risk Management, 17, 104-122.
Ahmadi, S., Ghanbari Movahed, R., Gholamrezaie, S., & Rahimian, M. (2022). Assessing the Vulnerability of Rural Households to Floods at Pol-e Dokhtar Region in Iran. Sustainability, 14(2), 762.
Ahmadi, S., Ghanbari, R., Gholamrezai, S., & Rahimian, M. (2023). Vulnerability Assessment of Rural Households to floods (Villages of Afrineh Watershed, Lorestan Province). Iranian Journal of Agricultural Economics and Development Research, 54(2), 439-457. doi: 10.22059/ijaedr.2021.314158.668976. (In Persian).
Australian Bureau of Statistics (2023). Sample size calculator, Australia.
Birkholz, S., Muro, M., Jeffrey, P., & Smith, H. M. (2014). Rethinking the relationship between flood risk perception and flood management. Science of the total environment, 478, 12-20.
de Brito, M. M., Evers, M., & Höllermann, B. (2017). Prioritization of flood vulnerability, coping capacity and exposure indicators through the Delphi technique: A case study in Taquari-Antas basin, Brazil. International journal of disaster risk reduction, 24, 119-128.
Disaster management administration of Mazandaran. (2021). Report of the Department of Statistics and Information. (In Persian).
Ebrahimian Ghajari Y & Barari Siavoshkolaei, M. (2019). Runoff Production Potential Zoning Using Fuzzy GIS-MCDA Models (Case Study: Tajan River Basin). Journal of Gematics Science and Technology; 9 (1) :1-14 URL:
http://jgst.issgeac.ir/article-1-809-fa.html.(In Persian).
Fahad, S., Hossain, M. S., Huong, N. T. L., Nassani, A. A., Haffar, M., & Naeem, M. R. (2022). An assessment of rural household vulnerability and resilience in natural hazards: evidence from flood prone areas. Environment, Development and Sustainability, 25(6), 5561-5577.
Gao, J.; Nickum, J.E.; Pan, Y. (2007). An assessment of flood hazard vulnerability in the Dongting Lake Region of China. Lakes Reserv. Res. Manag. 12, 27–34.
Hahn MB, Riederer AM, Foster SO (2009) The livelihood vulnerability index: a pragmatic approach to assessing risks from climate variability and change—a case study in Mozambique. Glob Environ Chang 19(1):74–88
Huang X, Huang X, He Y, Yang X (2017) Assessment of livelihood vulnerability of land-lost farmers in urban fringes: a case study of Xi’an, China. Habitat Int 59:1–9
Imran, M., Sumra, K., Mahmood, S. A., & Sajjad, S. F. (2019). Mapping flood vulnerability from socioeconomic classes and GI data: Linking socially resilient policies to geographically sustainable neighborhoods using PLS-SEM. International Journal of Disaster Risk Reduction, 41, 101288.
IPCC (2007) Climate change -the physical science basis. Contributionof Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK
IPCC. (2022). Climate Change 2022: Impacts, adaptation and vulnerability.
Iqbal, A., & Nazir, H. (2023). Community perceptions of flood risks and their attributes: a case study of rural communities of Khipro, district Sanghar, Pakistan. Urban Climate, 52, 101715.
Iran water resource management company of Iran. (2020). Basic studies of water resources. Iran water resource management company of Mazandaran. (In Persian).
Islamic Parliament Research Center of The Islamic Republic Of IRAN. (2019). Investigation and analysis of flood events in April 2019. Office of Basic Studies. (In Persian).
Islamic Parliament Research Center of The Islamic Republic Of IRAN. (2019). Investigation and analysis of flood events in April 2019. Office of Basic Studies. (In Persian).
Jamshed, A., Birkmann, J., Rana, I. A., & McMillan, J. M. (2020). The relevance of city size to the vulnerability of surrounding rural areas: an empirical study of flooding in Pakistan. International Journal of Disaster Risk Reduction, 48, 101601.
Jamshidi, O., Asadi, A., Kalantari, K., Azadi, H., & Scheffran, J. (2019). Vulnerability to climate change of smallholder farmers in the Hamadan province, Iran. Climate Risk Management, 23, 146-159.
Keshavarz, M., & Soltani Moqadas, R. (2021). Assessing rural households’ resilience and adaptation strategies to climate variability and change. Journal of Arid Environments, 184, 104323.
Keshavarz, M., Karami, E., & Zibaie, M. (2014). Adaptation of Iranian farmers to climate variability and change. Regional Environmental Change, 14(3), 1163-1174.
Mehryar, S., & Surminski, S. (2021). National laws for enhancing flood resilience in the context of climate change: potential and shortcomings. Climate Policy, 21(2), 133-151.
Moazezi Zadeh Tehrani, M. R. (2014). Vulnerability measures for flood and drought and the application in hydrometric network design (Master's thesis, University of Waterloo).
Mohmmed, A., Li, J., Elaru, J., Elbashier, M. M., Keesstra, S., Artemi, C., & Teffera, Z. (2018). Assessing drought vulnerability and adaptation among farmers in Gadaref region, Eastern Sudan. Land use policy, 70, 402-413.
Nguyen, M. H., Le, D. P., & Vo, T. T. (2021). Vulnerability to natural disaster and welfare effect: a case study of flood risk in Vietnam’s North central region. Journal of Asian and African Studies, 56(8), 1879-1898.
Nong, H. T. T., Gan, C., & Hu, B. (2022). Livelihood vulnerability to climate change: A case of farm households in Northeast Vietnam. Environment, Development and Sustainability, 24(10), 12059-12078.
Panthi, J., Aryal, S., Dahal, P., Bhandari, P., Krakauer, N. Y., & Pandey, V. P. (2016). Livelihood vulnerability approach to assessing climate change impacts on mixed agro-livestock smallholders around the Gandaki River Basin in Nepal. Regional environmental change, 16, 1121-1132.
Ponsian, N., Chrispina, K., Tago, G., & Mkiibi, H. (2014). The effect of working capital management on profitability. International Journal of Economics, Finance and Management Sciences, 2(6), 347-355.
Regional water company of Mazandaran. (2020).Avilable at: www.mzrw.ir. (In Persian).
Rezaei, P. (2018). Determining the Flooding Zone Using GIS and HEC-RAS Hydraulic ModelCase Study: Goharrood River, Rasht. Journal of Geography and Environmental Hazards, 7(3), 41-56. doi: 10.22067/geo.v0i0.69052.(In Persian).
Rufat, S., Tate, E., Burton, C. G., & Maroof, A. S. (2015). Social vulnerability to floods: Review of case studies and implications for measurement. International journal of disaster risk reduction, 14, 470-486.
Salik, K.M., Jahangir, S., Hasson, S., 2015. Climate change vulnerability and adaptation options for the coastal communities of Pakistan. Ocean & Coastal Management 112, 61–73.
Santos, P.P.; Pereira, S.; Zêzere, J.L.; Tavares, A.O.; Reis, E.; Garcia, R.A.C.; Oliveira, S.C. A comprehensive approach to understanding flood risk drivers at the municipal level. J. Environ. Manag. 2020, 260, 110127.
Saptutyningsih, E., Diswandi, D., & Jaung, W. (2020). Does social capital matter in climate change adaptation? A lesson from agricultural sector in Yogyakarta. Indonesia. Land use policy, 95, 104189.
Savari, M., Damaneh, H. E., & Damaneh, H. E. (2022). Drought vulnerability assessment: Solution for risk alleviation and drought management among Iranian farmers. International Journal of Disaster Risk Reduction, 67, 102654
Seravani C, Abdollahzadeh G, Sharifzadeh M S, Ghorbani K. Vulnerability assessment of households to flood risk in the rural areas: case study of Aqqala and Gomishan Counties. Journal of Spatial Analysis Environmental Hazards 2021;8 (2) :101-118URL:
http://jsaeh.khu.ac.ir/article-1-3232-fa.html.(In Persian).
Shah KU, Dulal HB, Johnson C, Baptiste A (2013) Understanding livelihood vulnerability to climate change: applying the livelihood vulnerability index in Trinidad and Tobago. Geoforum
Shahzad L, Tahira A, Sharif F, Haq IU, Mukhtar H (2019) Assessing the impacts of changing climate on forest ecosystem services and livelihood of Balakot mountainous communities. Pak J Bot
Shami, M., Nazari, A., Afsardeir, A. & Saiedi, A. (2017, November). Investigating the occurrence of floods in the villages of Langrod districts and explaining the impact method. Paper presented at the 5th Comprehensive Conference Flood Mangement and Engineering, Tehran, Iran. (In Persian).
Sharma, J., & Ravindranath, N. H. (2019). Applying IPCC 2014 framework for hazard-specific vulnerability assessment under climate change. Environmental Research Communications, 1(5), 051004.
Solaimani, K. (2019). Flood risk zoning in Mazandaran province. Sari University of Agriculture and Natural Resources.(In Persian).
Veenstra, J. (2013). Flood vulnerability assessment on a commune level in Vietnam. Bachelor thesis about the application of a flood vulnerability assessment to communes of the Ca river basin in Nghe An province in Vietnam (Bachelor's thesis, University of Twente).
Zarafshani, K., Maleki, T., & Keshavarz, M. (2020). Assessing the vulnerability of farm families towards drought in Kermanshah province, Iran. GeoJournal, 85, 823-836.
Zuniga-Teran, A. A., Mussetta, P. C., Ley, A. N. L., Díaz-Caravantes, R. E., & Gerlak, A. K. (2021). Analyzing water policy impacts on vulnerability: Cases across the rural-urban continuum in the arid Americas. Environmental Development, 38, 100552.