Abbasi, Y., Mirzaei, F., & Sohrabi, T. (2018). Exploring distribution of heavy metals in wastewater-irrigated agricultural soil using kriging method and hydrus model: case study in south of Tehran.
Iranian Journal of Health and Environment, 11(3): 351-64.
http://ijhe.tums.ac.ir/article-1-6060-fa.html (In Persian).
Abbaszadeh, M., Mirzaei, R., & Bakhtiari, A. (2020). Risk Assessment and Spatial Modeling of Heavy Metals Contamination in Topsoil around Venarj Manganese Mine by Artificial Neural Networks Method.
Journal of Environmental Health Engineering, 7, 24-44.
https://doi.org/10.29252/jehe.0.24.
Anonymous. (2008). National Standard of Iran No. 10716. Compost - physical and chemical characteristics (In Persian).
Ajaweed, A. N., Hassan, F. M., & Hyder, N. H. (2022). Evaluation of physio-chemical characteristics of bio fertilizer produced from organic solid waste using composting bins.
Sustain, 14(8), 4738.
https://doi.org/10.3390/su14084738.
Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications.
Toxics, 9(3), 42. https://doi.org/
10.3390/toxics9030042 .
Aljumaily, M. M., & Al-Hamandi, H. M. (2022). Organic Matter and Heavy Metals Sorption. Tikrit Journal for Agricultural Sciences, 22(3), 158-165.
Amaro-Espejo, I. A., Castaneda-Chavez, M. D. R., Murguía-Gonzalez, J., Lango-Reynos, F., Banuelos-Hernandez, K. P., & Galindo-Tovar, M. E. (2020). Geoaccumulation and ecological risk indexes in papaya cultivation due to the presence of trace metals.
Agronomy, 10, 301. https://doi.org/
10.3390/agronomy10020301
Angulo, E. (1996). The Tomlinson Pollution Load Index applied to heavy metal, ‘Mussel-Watch’data: a useful index to assess coastal pollution.
Science of the Total Environment, 187(1), 19-56.
https://doi.org/10.1016/0048-9697(96)05128-5 .
Appolloni, E., Orsini, F., Specht, K., Thomaier, S., Sanyé-Mengual, E., Pennisi, G., & Gianquinto, G. (2021). The global rise of urban rooftop agriculture: A review of worldwide cases.
Journal of Cleaner Production, 296, 126556. https://doi.org/
10.1016/J.JCLEPRO.2021.126556
Behbahaninia, A., & Saraf, A. (2010). Modeling Ni Transport in Soil under Sewage Sludge Application. The First International Conference on Plant, Water, Soil & Weather Modeling International Center for Science, High Technology & Environmental Sciences Shahid Bahonar University of Kerman. 14 and 15 Nov. 2010. Kerman, Iran.
Bekier, J., Jamroz, E., Dębicka, M., Ćwieląg-Piasecka, I. & Kocowicz, A. (2022). Quantitative Carbon Changes of Selected Organic Fractions during the Aerobic Biological Recycling of Biodegradable Municipal Solid Waste (MSW) as a Potential Soil Environment Improving Amendment—A Case Study.
Agriculture, 12(12), 2058.
https://www.mdpi.com/2077-0472/12/12/2058/pdf.
Bhardwaj, P., Sharma, R.K., Chauhan, A., Ranjan, A., Rajput, V. D., Minkina, T., & Tripathi, A. (2023). Assessment of Heavy Metal Distribution and Health Risk of Vegetable Crops Grown on Soils Amended with Municipal Solid Waste Compost for Sustainable Urban Agriculture. Water, 15(2): 228.
Bremner, J. M. (1996). Nitrogen-total. In: Sparks, D. L. (Ed.), Method of Soil Analysis. Soil Science Society of America, Inc, American Society of Agronomy, Inc., Madison, Wisconsin, USA, pp. 1085–1122.
Chen, X., Hossain, M. F., Duan, C., Lu, J., Tsang, Y. F., Islam, M. S., & Zhou, Y. (2022). Isotherm models for adsorption of heavy metals from water-A review.
Chemosphere, 135545.
https://doi.org/10.1016/j.chemosphere.2022.135545.
Cherif, H., Ayari, F., Ouzari, H., Marzorati, M., Brusetti, L., Jedidi, N., Abdennaceur, H., & Daffonchio, D. (2009). Effects of municipal solid waste compost, farmyard manure and chemical fertilizers on wheat growth, soil composition and soil bacterial characteristics under Tunisian arid climate.
European Journal of Soil Biology, 45(2): 138–145.
https://doi.org/10.1016/j.ejsobi.2008.11.003 .
Filipović, V., Cambier, P., Matijević, L., & Benoit, P. (2016). Modeling Cd and Cu mobility in soils amended by long-term urban waste compost applications. In EGU General Assembly Conference Abstracts (pp. EPSC2016-17147)
Gan, L., Wang, J., Xie, M., & Yang, B. (2022). Ecological risk and health risk analysis of soil potentially toxic elements from oil production plants in central China.
Scientific Reports, 12, 17077. doi:
https://doi.org/10.1038/s41598-022-21629-y .
Gee, G. W., & Bauder, J. W. (1986). Particle‐size analysis. Methods of soil analysis: Part 1 Physical and mineralogical methods. 5, 383-411.
Goulart, R. Z., Reichert, J. M., & Rodrigues, M. F. (2020). Cropping poorly-drained lowland soils: Alternatives to rice monoculture, their challenges and management strategies.
Agricultural Systems, 177, 102715.
https://doi.org/10.1016/j.agsy.2019.102715 .
Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975-1001.
Helmke, P. A., & Sparks, D. L. (1996). Lithium, sodium, potassium, rubidium, and cesium. Methods of soil analysis: Part 3 chemical methods. 5,551-574.
Huang, L., Rad, S., Xu, L., Gui, L., Song, X., Li, Y., Wu, Z., & Chen, Z. (2020). Heavy metals distribution, sources, and ecological risk assessment in Huixian wetland, South China.
Water. 12, 431.
https://doi.org/10.3390/w12020431 .
Jamroz, E., Bekier, J., Medynska-Juraszek, A., Kaluza-Haladyn, A., Cwielag-Piasecka, I., & Bednik, M. (2020). The contribution of water extractable forms of plant nutrients to evaluate MSW compost maturity: A case study. Scientific Reports, 10, 12842.
Jarvis, N., & Larsson, M. (1998). The MACRO model (version 4.1). Technical Description, SLU, Dep. of Soil Sciences, Uppsala.
Loague, K., & Green, R.E. (1991). Statistical and graphical methods for evaluating solute transport models: Overview and application.
Journal of Contaminant Hydrology, 7: 51–73. https://doi.org/
10.1016/0169-7722(91)90038-3.
Mohammadi Monavar, H., & Bagher Pour, H. (2016). Application of visible and near-infrared spectroscopy for identification of cadmium (Cd) and lead (Pb) pollution in soil using regression models and ANN.
Iranian Journal of Biosystem Engineering, 48(1): 37-43. https://doi.org/
10.22059/ijbse.2017.61559 (In Persian).
Montemurro, F., Maiorana, M., Convertini, G., & Ferri, D. (2006). Compost organic amendments in fodder crops: effects on yield, nitrogen utilization and soil characteristics. Compost Science & Utilization, 14(2), 114–123.
Mousavi, S. M., Moshiri, F., & Moradi, S. (2018). Mobility of heavy metals in sandy soil after application of composts produced from maize straw, sewage sludge and biochar: Discussion of Gondek et al. (2018).
Journal of Environmental Management, 222, 132-134.
https://doi.org/10.1016/j.jenvman.2018.05.035 .
Mousavi, S. M., Raiesi, T., Sedaghat, A., & Kumar, A. (2023). Potentially toxic metals: Their effects on the soil-human health continuum. Journal of Advances in Environmental Health Research, (In press).
Mousavi, S. M., Motesharezadeh, B., Hosseini, H.M., Zolfaghari, A. A., Sedaghat, A., & Alikhani, H. (2022). Efficiency of different models for investigation of the responses of sunflower plant to Pb contaminations under SiO2 nanoparticles (NPs) and Pseudomonas fluorescens treatments.
Arabian Journal of Geosciences, 15(14), 1256.
https://doi.org/10.1007/s12517-022-10557-w .
Mousavi, S.M., Bahmanyar, M.A., Pirdashti, H., & Moradi, S. (2017). Nutritional (Fe, Mn, Ni, and Cr) and growth responses of rice plant affected by perennial application of two bio-solids.
Environmental Monitoring and Assessment, 189, 1-10.
https://doi.org/10.1007/s10661-017-6050-z .
Naveenkumar, T., Backiyavathy, M.R., Chitdeshwari, T., Maheshwari, M., Saraswathi, T., & Lakshmana, A. (2022). Influence of zeolite on heavy metal immobilization in municipal solid waste compost contaminated soil. Journal of Applied and Natural Sciences, 14(3), 971-977.
Noor, T., Javid, A., Hussain, A., Bukhari, S. M., Ali, W., Akmal, M., & Hussain, S. M. (2020). Types, sources and management of urban wastes. In Urban ecology, Elsevier. pp. 239-263.
Olsen, S. R., & Sommers, L. E. (1982). Analysis of soil available phosphorus. Method of soil analysis: Part 2.
Oueriemmi, H., Kidd, P., Trasar-Cepeda, C., Rodríguez-Garrido, B., Zoghlami, R., Ardhaoui, K., Prieto-Fernández, Á., & Moussa, M. (2021). Evaluation of Composted Organic Wastes and Farmyard Manure for Improving Fertility of Poor Sandy Soils in Arid Regions.
Agriculture, 11, 415.
https://doi.org/10.3390/agriculture11050415 .
Page, A. L. (1982). Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. Soil Science Society of America.
Pandey, J., Sarkar, S., & Pandey, V. C. (2022). Compost-assisted phytoremediation. In Assisted Phytoremediation. Elsevier, Amsterdam, The Netherlands. pp. 243–264.
Papafilippaki, A., Paranychianakis, N., & Nikolaidis, N. P. (2015). Effects of soil type and municipal solid waste compost assoil amendment on Cichorium spinosum (spiny chicory) growth.
Scientia Horticulturae, 195,195–205. https://doi.org/
10.1016/j.scienta.2015.09.030
Párraga-Aguado, I., Álvarez-Rogel, J., González-Alcaraz, M. N., & Conesa, H. M. (2017). Metal mobility assessment for the application of an urban organic waste amendment in two degraded semiarid soils.
Journal of Geochemical Exploration, 173, 92-98.
https://doi.org/10.1016/j.gexplo.2016.11.022 .
Parvin Nia, M., & Ahmadi, Kh. (2017). Accumulation and Numerical Modeling of Heavy Metals in Surface Soil of Pars Special Economic Energy Zone. Journal of Water and Soil Conservation, 23(5): 67-86.
Quinn, R. (2015). Evaluation of flow models and pollutant retention isotherms for their application to rain garden bioretention (Doctoral dissertation, University of Greenwich).
Rhoades, J. D. (1993). Electrical conductivity methods for measuring and mapping soil salinity. Advances in Agronomy, pp. 201-251
Riaz, A., Younis, A., Ghani, I., Tariq, U., & Ahsan, M. (2015). Agricultural waste as growing media component for the growth and flowering of Gerbera jamesonii cv. hybrid mix.
International Journal of Recycling of Organic Waste in Agriculture, 4, 197–204.
https://doi.org/10.1007/s40093-015-0099-x .
Richards, L. A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1(5), 318-333.
Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International, 126, 76–88.
Sahebdelfar, N., Khorasani, R., & Astaraei, A. (2022). Effect of some additives on heavy metals behavior and phytoavailability in municipal solid waste compost-amended soil
. International Journal of Environmental Science and Technology, 1-12.
https://doi.org/10.1007/s13762-021-03146-z .
Salis, L., Cabiddu, A., Sanna, F., Sitzia, M., & Carboni, G. (2024). Municipal solid waste compost use can improve crop barley production and enhance soil chemical fertility. European Journal of Agronomy, 153, 127064.
Shakil, S., Nawaz, K., & Sadef, Y. (2023). Evaluation and environmental risk assessment of heavy metals in the soil released from e-waste management activities in Lahore, Pakistan.
Environmental Monitoring and Assessment, 195, 89. https://doi.org/
10.1007/s10661-022-10701-9 .
Shamsoddini, A, & Esmaeili, S. (2023). Modelling of Soil Heavy Metal contamination using Machine learning techniques and spectroscopic data. MJSP 26 (4):139-160.
Sharma, N., Sharma, R. K., Samant, S. S., Pande, V., Kumar, U., & Singh, P. K. (2022). Land application of municipal compost in mountain ecosystem: Effects on growth, biomass and heavy metal uptake by vegetable crops. International Journal of Agriculture and Plant Science, 4: 1–9.
Srivastava, M., & Kumar, M. (2020). Impact of Solid Municipal Waste Landfills on Groundwater Resources: Need for Integrated Solid Waste Management Aligned with the Conservation of Groundwater. In Resilience, Response, and Risk in Water Systems; Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. pp. 303–319.
Su, C., Wang, J., Chen, Z., Meng, J., Yin, G., Zhou, Y., & Wang, T. (2023). Sources and health risks of heavy metals in soils and vegetables from intensive human intervention areas in South China.
Science of the Total Environment, 857, 159389.
https://doi.org/10.1016/j.scitotenv.2022.159389 .
Walkley, A, & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38.
Wei, Z., Wang, D., Zhou, H., & Qi, Z. (2011). Assessment of soil heavy metal pollution with principal component analysis and geoaccumulation index.
Procedia Environmental Sciences, 10, 1946–1952.
https://doi.org/10.1016/j.proenv.2011.09.305 .
Yong, L. L., Anggraini, V., Taha, M. R., & Raghunandan, M. E. (2022). Short-and long-term transports of heavy metals through earthen liners: physical and numerical modeling.
Bulletin of Engineering Geology and the Environment, 81(1), 69.
https://doi.org/10.1007/s10064-022-02569-3 .