Agegnehu, G., Srivastava, A. K., & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 119, 156-170. https://doi. org/10.1016/j.apsoil.2017.06.008
Amir, S., Benlboukht, F., Cancian, N., Winterton, P., & Hafidi, M. (2008). Physico-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composting.
Journal of Hazardous Materials,
160(2-3), 448-455.
https://doi.org/10.1016/j.jhazmat.2008.03.017
Awasthi, M. K., Duan, Y., Liu, T., Awasthi, S. K., & Zhang, Z. (2020). Relevance of biochar to influence the bacterial succession during pig manure composting.
Bioresource Technology,
304, 122962.
https://doi.org/10.1016/j.biortech.2020.122962
Awasthi, M. K., Wang, M., Chen, H., Wang, Q., Zhao, J., Ren, X., & Zhang, Z. (2017a). Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting.
Bioresource Technology,
224, 428-438.
https://doi.org/10.1016/j.biortech.2016.11.014
Awasthi, M. K., Wang, Q., Chen, H., Awasthi, S. K., Wang, M., Ren, X., & Zhang, Z. (2018). Beneficial effect of mixture of additives amendment on enzymatic activities, organic matter degradation and humification during biosolids co-composting.
Bioresource Technology,
247, 138-146.
https://doi.org/10.1016/j.biortech.2017.09.061
Awasthi, M. K., Wang, Q., Chen, H., Wang, M., Ren, X., Zhao, J., & Zhang, Z. (2017b). Evaluation of biochar amended biosolids co-composting to improve the nutrient transformation and its correlation as a function for the production of nutrient-rich compost.
Bioresource Technology,
237, 156-166.
https://doi.org/10.1016/j.biortech.2017.01.044
Barthod, J., Rumpel, C., & Dignac, M. F. (2018). Composting with additives to improve organic amendments. A review. Agronomy for Sustainable Development, 38(2), 17. https://doi.org/10.1007/s13593-018-0491-9
Bernal, M. P., Alburquerque, J. A., & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review.
Bioresource Technology,
100(22), 5444-5453.
https://doi.org/10.1016/j.biortech.2008.11.027
Campbell Jr, A. G., Folk, R. L., & Tripepi, R. R. (1997). Wood ash as an amendment in municipal sludge and yard waste composting processes.
Compost Science & Utilization,
5(1), 62-73. h
ttps://doi.org/10.1080/1065657X.1997.10701864
Carter, M. R., & Gregorich, E. G. (Eds.). (2007). Soil sampling and methods of analysis. CRC press.
Cataldo, D. A., Maroon, M., Schrader, L. E., & Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid.
Communications in Soil Science and Plant Analysis,
6(1), 71-80.
https://doi.org/10.1080/00103627509366547
Chen, X., Du, Z., Liu, D., Wang, L., Pan, C., Wei, Z., & Zhao, R. (2022). Biochar mitigates the biotoxicity of heavy metals in livestock manure during composting. Biochar, 4(1), 48. https://doi.org/10.1007/s42773-022-00174-x
Chen, Y. X., Huang, X. D., Han, Z. Y., Huang, X., Hu, B., Shi, D. Z., & Wu, W. X. (2010). Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere, 78(9), 1177-1181. https://doi.org/10.1016/ j.chemosphere.2009.12.029
Chowdhury, M. A., de Neergaard, A., & Jensen, L. S. (2014). Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting. Chemosphere, 97, 16-25. https://doi.org/10.1016/j. chemosphere.2013.10.030.
Chung, W. J., Chang, S. W., Chaudhary, D. K., Shin, J., Kim, H., Karmegam, N., ... & Ravindran, B. (2021). Effect of biochar amendment on compost quality, gaseous emissions and pathogen reduction during in-vessel composting of chicken manure.
Chemosphere, 283, 131129.
https://doi.org/10.1016/j.chemosphere.2021.131129
Cui, H., Ou, Y., Wang, L., Yan, B., Li, Y., & Ding, D. (2020). The passivation effect of heavy metals during biochar-amended composting: emphasize on bacterial communities.
Waste Management,
118, 360-368.
https://doi.org/10.1016/j.wasman.2020.08.043
Dias, B. O., Silva, C. A., Higashikawa, F. S., Roig, A., & Sánchez-Monedero, M. A. (2010). Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification.
Bioresource Technology,
101(4), 1239-1246.
https://doi.org/10.1016/j.biortech.2009.09.024
Doublet, J., Francou, C., Poitrenaud, M., & Houot, S. (2011). Influence of bulking agents on organic matter evolution during sewage sludge composting; consequences on compost organic matter stability and N availability.
Bioresource Technology,
102(2), 1298-1307.
https://doi.org/10.1016/j.biortech.2010.08.065
Gabhane, J., William, S. P., Bidyadhar, R., Bhilawe, P., Anand, D., Vaidya, A. N., & Wate, S. R. (2012). Additives aided composting of green waste: Effects on organic matter degradation, compost maturity, and quality of the finished compost.
Bioresource Technology,
114, 382-388.
https://doi.org/10.1016/j.biortech.2012.02.040
Girotto, F., & Cossu, R. (2017). Animal waste: Opportunities and challenges. Sustainable Agriculture Reviews, 1-13. https://doi.org/10.1007/978-3-319-48006-0_1
Gou, M., Hu, H. W., Zhang, Y. J., Wang, J. T., Hayden, H., Tang, Y. Q., & He, J. Z. (2018). Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils.
Science of the Total Environment, 612, 1300-1310.
https://doi.org/10.1016/j.scitotenv.2017.09.028
Hagemann, N., Subdiaga, E., Orsetti, S., de la Rosa, J. M., Knicker, H., Schmidt, H. P., ... & Behrens, S. (2018). Effect of biochar amendment on compost organic matter composition following aerobic composting of manure. Science of The Total Environment, 613, 20-29. https://doi.org/10.1016/j.scitotenv.2017.08.161.
He, X., Chen, L., Han, L., Liu, N., Cui, R., Yin, H., & Huang, G. (2017). Evaluation of biochar powder on oxygen supply efficiency and global warming potential during mainstream large-scale aerobic composting.
Bioresource Technology, 245, 309-317.
https://doi.org/10.1016/j.biortech.2017.08.076.
Hemati A, 2017. Isolation of thermophile ligninolytic microorganisms for acceleration of compost production and its quality improvement. PH.D Thesis. Faculty of Agriculture, University of Tabriz. (in Persian)
Jiang, J., Kang, K., Wang, C., Sun, X., Dang, S., Wang, N., & Li, Y. (2018). Evaluation of total greenhouse gas emissions during sewage sludge composting by the different dicyandiamide added forms: Mixing, surface broadcasting, and their combination.
Waste Management,
81, 94-103.
https://doi.org/10.1016/j.wasman.2018.10.003
Jurado, M. M., Suárez-Estrella, F., Vargas-García, M. C., López, M. J., López-González, J. A., & Moreno, J. (2014). Evolution of enzymatic activities and carbon fractions throughout composting of plant waste.
Journal of Environmental Management,
133, 355-364.
https://doi.org/10.1016/j.jenvman.2013.12.020
Li, H., Zhang, T., Tsang, D. C., & Li, G. (2020). Effects of external additives: Biochar, bentonite, phosphate, on co-composting for swine manure and corn straw.
Chemosphere,
248, 125927.
https://doi.org/10.1016/j.chemosphere.2020.125927
Li, R., Wang, J. J., Zhang, Z., Shen, F., Zhang, G., Qin, R., & Xiao, R. (2012). Nutrient transformations during composting of pig manure with bentonite.
Bioresource Technology,
121, 362-368.
https://doi.org/10.1016/j.biortech.2012.06.065
Manu, M. K., Wang, C., Li, D., Varjani, S., Xu, Y., Ladumor, N., & Wong, J. W. (2021). Biodegradation kinetics of ammonium enriched food waste digestate compost with biochar amendment.
Bioresource Technology,
341, 125871.
https://doi.org/10.1016/j.biortech.2021.125871
Mao, H., Lv, Z., Sun, H., Li, R., Zhai, B., Wang, Z., ... & Zhou, L. (2018). Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost.
Bioresource Technology, 258, 195-202.
https://doi.org/10.1016/j.biortech.2018.02.082.
Martin, J. M., Dai, M. H., & Cauwet, G. (1995). Significance of colloids in the biogeochemical cycling of organic carbon and trace metals in the Venice Lagoon (Italy).
Limnology and Oceanography,
40(1), 119-131.
https://doi.org/10.4319/lo.1995.40.1.0119
Morales, A. B., Bustamante, M. A., Marhuenda-Egea, F. C., Moral, R., Ros, M., & Pascual, J. A. (2016). Agri-food sludge management using different co-composting strategies: study of the added value of the composts obtained.
Journal of Cleaner Production,
121, 186-197.
https://doi.org/10.1016/j.jclepro.2016.02.012
Mukherjee, A., & Lal, R. (2014). The biochar dilemma. Soil Research, 52(3), 217-230. https://doi.org/10.1071/SR13359
Olivella, M. A., Sole, M., Gorchs, R., Lao, C., & De Las Heras, F. X. C. (2011). Geochemical characterization of a Spanish leonardite coal. Archives of Mining Sciences, 56(4), 789-804.
Peters, J., Combs, S., Hoskins, B., Jarman, J., Kovar, J., Watson, M., & Wolf, N. (2003). Recommended methods of manure analysis. University of Wisconsin Cooperative Extension Publishing: Madison, WI.
Qi, B. C., Aldrich, C., & Lorenzen, L. (2004). Effect of ultrasonication on the humic acids extracted from lignocellulose substrate decomposed by anaerobic digestion.
Chemical Engineering Journal,
98(1-2), 153-163.
https://doi.org/10.1016/j.cej.2003.07.002
Rasapoor, M., Nasrabadi, T., Kamali, M., & Hoveidi, H. (2009). The effects of aeration rate on generated compost quality, using aerated static pile method.
Waste Management,
29(2), 570-573.
https://doi.org/10.1016/j.wasman.2008.04.012
Ren, X., Wang, Q., Awasthi, M. K., Zhao, J., Wang, J., Liu, T., & Zhang, Z. (2019). Improvement of cleaner composting production by adding Diatomite: From the nitrogen conservation and greenhouse gas emission.
Bioresource Technology,
286, 121377.
https://doi.org/10.1016/j.biortech. 2019.121377
Sánchez-García, M., Alburquerque, J. A., Sánchez-Monedero, M. A., Roig, A., & Cayuela, M. L. (2015). Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions.
Bioresource Technology,
192, 272-279.
https://doi.org/10.1016/j.biortech.2015.05.003
Sánchez–Monedero, M. A., Roig, A., Cegarra, J., & Bernal, M. P. (1999). Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting.
Bioresource Technology,
70(2), 193-201.
https://doi.org/10.1016/S0960-8524(99)00018-8
Wang, C., Tu, Q., Dong, D., Strong, P. J., Wang, H., Sun, B., & Wu, W. (2014). Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting.
Journal of Hazardous Materials,
280, 409-416.
https://doi.org/10.1016/j.jhazmat.2014.08.030
Wang, Z., Xu, Y., Yang, T., Liu, Y., Zheng, T., & Zheng, C. (2023). Effects of biochar carried microbial agent on compost quality, greenhouse gas emission and bacterial community during sheep manure composting.
Biochar,
5(1), 3.
https://doi.org/10.1007/s42773-022-00202-w
Westerman RL (1990) Soil Testing and Plant Analysis. 3. In: The Soil Science Society of America Book Series. Third Edition, Soil Science Society of American, Inc., Madison, Wisconsin, USA, pp 389-427.
Zalewska, M., Błażejewska, A., Szadziul, M., Ciuchciński, K., & Popowska, M. (2024). Effect of composting and storage on the microbiome and resistome of cattle manure from a commercial dairy farm in Poland. Environmental Science and Pollution Research, 1-17. https://doi.org/10.1007/s11356-024-33276-z
Zhang, J., Lü, F., Shao, L., & He, P. (2014). The use of biochar-amended composting to improve the humification and degradation of sewage sludge.
Bioresource Technology,
168, 252-258.
https://doi.org/10.1016/j.biortech.2014.02.080
Zucconi, F., Pera, A., Forte, M., & De Bertoldi, M. (1981). Evaluating toxicity of immature compost. Biocycle, 22: 54–57.