Utilizing periphyton as an innovative biotechnology in pollutants removal

Document Type : Review

Authors

1 Department of Soil Science, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran

2 Department of Soil Science, College of Agriculture & Natural Resources, University of Tehran

Abstract

Periphyton is a complex biological community comprising microorganisms and organisms from different physiological groups that collectively attach to various submerged surfaces in wetland ecosystems. Periphytic biofilms play a critical role in the wetland ecosystem’s dynamicity and possess a considerable capacity for decontamination. The following article examines the various aspects of periphytic biofilms’ capacity for removing some of the most critical environmental pollutants, including organic pollutants, pharmaceuticals, heavy metals, microplastics, and excess nutrients. The paper provides comprehensive discussions on the critical pollutant removal mechanisms employed by the periphytic communities. Additionally, the paper endeavors to contribute to the available knowledge regarding utilizing and developing periphyton-derived bioremediation technologies by presenting the most recent research findings, discussing common challenges in periphyton’s biotechnological application, and delineating crucial research gaps to postulate future research questions. Applying periphyton in pollutant removal aligns with the most recent paradigm of bioremediation technologies advocating the use of microbial consortia instead of single microbial species. In this regard, research results convey that the simultaneous presence of multiple microbial groups together in a biological community (such as periphyton) increases the microorganisms’ resistance to unfavorable environmental conditions and enhances the biological community’s capacity for decontamination. Based on the studies presented in this article, periphytic biological communities can employ different mechanisms to transform and biodegrade a wide array of pollutants.

Keywords

Main Subjects


Utilizing Periphyton as an Innovative Biotechnology in Pollutants Removal

 

EXTENDED ABSTRACT

 

Background and aim

Efficient removal of environmental pollutants in a sustainable and eco-friendly manner demands innovative approaches relying on sound science. Various physico-chemcial approaches have been put forward to alleviate the pollution problem but many of these have practical limitations due to high implementation costs, toxic by-product formation, and redistribution of pollutants in the environment. Biological and microbiological approaches, on the other hand, offer more economically-viable and environmentally sustainable alternatives to manage pollutants. Microorganisms have immense potential to remove pollutants or transform recalcitrant xenobiotics into less toxic chemical species. Recent paradigms in the science of biodegradation and recent developments in bioremediation technologies urge the utilization of microbial consortia to effectively remove a wide array of environmental pollutants instead of employing single microbial species. Periphyton—a complex, inter-connected, and biofilm-forming biological community of micro and macroorganisms inhabiting wetland ecosystems—has been shown to interact with various critical pollutants and contribute to their biodegradation. The paper aims to highlight the biological processes employed by the periphytic community to remove organic pollutants, pharmaceuticals, heavy metals, microplastics, and excess nutrients. The study also discusses periphytic biofilm formation and their response mechanisms to pollution. 

Methodology

The present paper reviews the related literature to compile comprehensively the most essential and recent understanding of the interaction between periphyton and environmental pollutants. The article also describes the mechanisms employed by the periphytic biofilm in pollutant removal, addresses common challenges in periphyton-based bioremediation, and outlines research gaps for future studies. These findings prove helpful in developing periphyton-derived bioremediation technologies.

Findings

The periphytic community is an integral and dynamic component of the wetland ecosystem, responding quickly to external stimuli. The community’s structural composition and biochemical processes change according to the prevailing surrounding conditions and the presence of pollutants. Periphyton uses various mechanisms to adapt to pollution and enable biodegradation. The unique characteristics and processes in the periphyton biological community that make it a powerful biodegradation agent include functional redundancy, ectopic or co-metabolism, extracellular polymeric substances synthesis, and pollutant-induced community tolerance. Moreover, the three-dimensional shape, porous nature, and voids in biofilms’ structure enhance pollutants’ bioadsorption and accumulation within the biofilm, removing them from the external environment. As such, studies have confirmed the considerable capacity of periphytic biofilms to remove organic pollutants, pharmaceuticals, heavy metals, microplastics, and excess nutrients from the environment. 

Conclusion

Periphyton-based bioremediation represents an innovative approach to managing environmental pollution. Although periphytic biofilms interact dynamically with living and non-living agents in their exterior and can alleviate environmental pollution via biosorption, assimilation, and biodegradation processes, effective and sustainable utilization of periphyton in bioremediation technologies demands the scientific community’s awareness of current bottlenecks and research gaps. Most importantly, attention needs to be given to controlling the growth of periphytic biofilms in a given ecosystem, increasing biofilms colonization potential and successful establishment in a new ecosystem, creating functionally-enriched periphyton with enhanced capacity in removing target pollutants, and safe and eco-friendly post-bioremediation disposal or reuse of periphyton. 

 

 

Alexander, M. (1999). Biodegradation and Bioremediation. Academic Press San Diego CA. Biodegradation and bioremediation.
Alikhani, H. A., Emami, S., & Etesami, H. (2021). Periphyton and Its Key Role in Paddy Fildes and Environmental Health. Iranian Journal of Soil and Water Research, 52(2), 451-467. (In Persian)
Amirhosseini, K., & Alikhani, H.A. (2022). Study of the function of microplastics as novel substrates for establishment and proliferation of periphytic biofilms and alleviation of its environmental contamination in rice fields. Master’s degree thesis. Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran. (In Persian)
Badireddy, A. R., Chellam, S., Gassman, P. L., Engelhard, M. H., Lea, A. S., & Rosso, K. M. (2010). Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions. Water Research, 44(15), 4505-4516.
Bhakta, J. N., Munekage, Y., Ohnishi, K., & Jana, B. B. (2012). Isolation and identification of cadmium-and lead-resistant lactic acid bacteria for application as metal removing probiotic. International Journal of Environmental Science and Technology, 9, 433-440.
Blanck, H., Eriksson, K. M., Grönvall, F., Dahl, B., Guijarro, K. M., Birgersson, G., & Kylin, H. (2009). A retrospective analysis of contamination and periphyton PICT patterns for the antifoulant irgarol 1051, around a small marina on the Swedish west coast. Marine pollution bulletin, 58(2), 230-237.
Boles, B. R., Thoendel, M., & Singh, P. K. (2004). Self-generated diversity produces “insurance effects” in biofilm communities. Proceedings of the National Academy of Sciences, 101(47), 16630-16635.
Bonefeld-Jorgensen, E. C., Hjelmborg, P. S., Reinert, T. S., Andersen, B. S., Lesovoy, V., Lindh, C. H., ... & Bonde, J. P. (2006). Xenoestrogenic activity in blood of European and Inuit populations. Environmental Health, 5, 1-12.
Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource technology, 74(1), 63-67.
Borah, D., Nainamalai, S., Gopalakrishnan, S., Rout, J., Alharbi, N. S., Alharbi, S. A., & Nooruddin, T. (2018). Biolubricant potential of exopolysaccharides from the cyanobacterium Cyanothece epiphytica. Applied microbiology and biotechnology, 102, 3635-3647.
Bradac, P., Wagner, B., Kistler, D., Traber, J., Behra, R., & Sigg, L. (2010). Cadmium speciation and accumulation in periphyton in a small stream with dynamic concentration variations. Environmental Pollution, 158(3), 641-648.
Chen, B., Li, F., Liu, N., Ge, F., Xiao, H., & Yang, Y. (2015). Role of extracellular polymeric substances from Chlorella vulgaris in the removal of ammonium and orthophosphate under the stress of cadmium. Bioresource technology, 190, 299-306.
Chen, X., Suwarno, S. R., Chong, T. H., McDougald, D., Kjelleberg, S., Cohen, Y., ... & Rice, S. A. (2013). Dynamics of biofilm formation under different nutrient levels and the effect on biofouling of a reverse osmosis membrane system. Biofouling, 29(3), 319-330.
Cho, Y. M., Ghosh, U., Kennedy, A. J., Grossman, A., Ray, G., Tomaszewski, J. E., ... & Luthy, R. G. (2009). Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment. Environmental science & technology, 43(10), 3815-3823.
Choi, A., Wang, S., & Lee, M. (2009). Biosorption of cadmium, copper, and lead ions from aqueous solutions by Ralstonia sp. and Bacillus sp. isolated from diesel and heavy metal contaminated soil. Geosciences Journal, 13, 331-341.
Conrad, H. E., Hedegaard, J., Gunsalus, I. C., Corey, E. J., & Uda, H. (1965). Lactone intermediates in the microbial oxidation of (+)-camphor. Tetrahedron Letters, 6(10), 561-565.
Conrad, M. E., Brodie, E. L., Radtke, C. W., Bill, M., Delwiche, M. E., Lee, M. H., ... & Colwell, F. S. (2010). Field evidence for co-metabolism of trichloroethene stimulated by addition of electron donor to groundwater. Environmental Science & Technology, 44(12), 4697-4704.
Debenest, T., Pinelli, E., Coste, M., Silvestre, J., Mazzella, N., Madigou, C., & Delmas, F. (2009). Sensitivity of freshwater periphytic diatoms to agricultural herbicides. Aquatic toxicology, 93(1), 11-17.
Decho, A. W., & Gutierrez, T. (2017). Microbial extracellular polymeric substances (EPSs) in ocean systems. Frontiers in microbiology, 8, 922.
DeLorenzo, V. (2018). Biodegradation and bioremediation: an introduction. Consequences of microbial Interactions with hydrocarbons, oils, and lipids: biodegradation and bioremediation. Handbook of hydrocarbon and lipid microbiology. Springer, Cham, Switzerland, 1-21.
Diels, L., Spaans, P. H., Van Roy, S., Hooyberghs, L., Ryngaert, A., Wouters, H., ... & Tsezos, M. (2003). Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria. Hydrometallurgy, 71(1-2), 235-241.
Duong, T. T., Morin, S., Herlory, O., Feurtet-Mazel, A., Coste, M., & Boudou, A. (2008). Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms. Aquatic toxicology, 90(1), 19-28.
Edwards, S. J., & Kjellerup, B. V. (2013). Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Applied microbiology and biotechnology, 97, 9909-9921.
EPA, U. (2005). Contaminated sediment remediation guidance for hazardous waste sites. Office of Solid Waste and Emergency Response.
Faheem, M., Shabbir, S., Zhao, J., G Kerr, P., Ali, S., Sultana, N., & Jia, Z. (2020a). Multifunctional Periphytic Biofilms: Polyethylene Degradation and Cd2+ and Pb2+ Bioremediation under High Methane Scenario. International journal of molecular sciences, 21(15), 5331.
Faheem, M., Shabbir, S., Zhao, J., Kerr, P. G., Sultana, N., & Jia, Z. (2020b). Enhanced adsorptive bioremediation of heavy metals (Cd2+, Cr6+, Pb2+) by methane-oxidizin g epipelon. Microorganisms, 8(4), 505.
Freilich, S., Zarecki, R., Eilam, O., Segal, E. S., Henry, C. S., Kupiec, M., ... & Ruppin, E. (2011). Competitive and cooperative metabolic interactions in bacterial communities. Nature communications, 2(1), 1-7.
Fu, Z., & Xi, S. (2020). Toxicology Mechanisms and Methods. Taylor and Francis Ltd. https://doi. org/10.1080/15376516.2019, 1701594.
Furey, P. C., Liess, A., & Lee, S. (2019). Substratum‐associated microbiota. Water Environment Research, 91(10), 1326-1341.
Gil-Allué, C., Tlili, A., Schirmer, K., Gessner, M. O., & Behra, R. (2018). Long-term exposure to silver nanoparticles affects periphyton community structure and function. Environmental Science: Nano, 5(6), 1397-1407.
Guasch, H., Admiraal, W., & Sabater, S. (2003). Contrasting effects of organic and inorganic toxicants on freshwater periphyton. Aquatic toxicology, 64(2), 165-175.
Gunsalus, I. C., Gunsalus, C. F., & Stanier, R. Y. (1953). The enzymatic conversion of mandelic acid to benzoic acid I: Gross fractionation of the system into soluble and particulate components. Journal of Bacteriology, 66(5), 538-542.
Ha, J., Engler, C. R., & Wild, J. R. (2009). Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Bioresource Technology, 100(3), 1138-1142.
Haghani, Z., Amirhosseini, K., & Alikhani, H. A. (2021). Study on the possibility of using native types of new-combinant periphyton in increasing the growth and yield of rice in paddy fields. Master’s degree thesis. Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran. (In Persian)
Havugimana, E. R. N. E. S. T. E., Bhople, B. S., Kumar, A. N. I. L., Byiringiro, E. M. M. A. N. U. E. L., Mugabo, J. P., & Kumar, A. R. U. N. (2017). Soil pollution–major sources and types of soil pollutants. Environmental science and engineering, 11, 53-86.
Holding, K. L., Gill, R. A., & Carter, J. (2003). The relationship between epilithic periphyton (biofilm) bound metals and metals bound to sediments in freshwater systems. Environmental Geochemistry and Health, 25, 87-93.
Hu, E., Shang, S., Tao, X. M., Jiang, S., & Chiu, K. L. (2016). Regeneration and reuse of highly polluting textile dyeing effluents through catalytic ozonation with carbon aerogel catalysts. Journal of Cleaner Production, 137, 1055-1065.
Jacquin, J., Cheng, J., Odobel, C., Pandin, C., Conan, P., Pujo-Pay, M., ... & Ghiglione, J. F. (2019). Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the “Plastisphere”. Frontiers in Microbiology, 10, 865.
Jang, M. S., Lee, Y. M., Kim, C. H., Lee, J. H., Kang, D. W., Kim, S. J., & Lee, Y. C. (2005). Triphenylmethane reductase from Citrobacter sp. strain KCTC 18061P: purification, characterization, gene cloning, and overexpression of a functional protein in Escherichia coli. Applied and environmental microbiology, 71(12), 7955-7960.
Johnsen, A. R., & Karlson, U. (2004). Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Applied microbiology and biotechnology, 63, 452-459.
Kang, J. H., Katayama, Y., & Kondo, F. (2006). Biodegradation or metabolism of bisphenol A: from microorganisms to mammals. Toxicology, 217(2-3), 81-90.
Kazamia, E., Czesnick, H., Nguyen, T. T. V., Croft, M. T., Sherwood, E., Sasso, S., ... & Smith, A. G. (2012). Mutualistic interactions between vitamin B12‐dependent algae and heterotrophic bacteria exhibit regulation. Environmental microbiology, 14(6), 1466-1476.
Kostel, J. A., Wang, H., Amand, A. L. S., & Gray, K. A. (1999). 1. Use of a novel laboratory stream system to study the ecological impact of PCB exposure in a periphytic biolayer. Water Research, 33(18), 3735-3748.
Kurzbaum, E., Kirzhner, F., Sela, S., Zimmels, Y., & Armon, R. (2010). Efficiency of phenol biodegradation by planktonic Pseudomonas pseudoalcaligenes (a constructed wetland isolate) vs. root and gravel biofilm. Water research, 44(17), 5021-5031.
Larned, S. T. (2010). A prospectus for periphyton: recent and future ecological research. Journal of the North American Benthological Society, 29(1), 182-206.
Lewis, S. L., & Maslin, M. A. (2015). Defining the anthropocene. Nature, 519(7542), 171-180.
Li, Y., Zhang, P., Wang, L., Wang, C., Zhang, W., Zhang, H., ... & Li, W. (2019). Microstructure, bacterial community and metabolic prediction of multi-species biofilms following exposure to di-(2-ethylhexyl) phthalate (DEHP). Chemosphere, 237, 124382.
Liu, S. Y., Leung, M. M. L., Fang, J. K. H., & Chua, S. L. (2021). Engineering a microbial ‘trap and release’mechanism for microplastics removal. Chemical Engineering Journal, 404, 127079.
Lolas IB, Chen X, Bester K, Nielsen JL (2012) Identification of triclosan-degrading bacteria using stable isotope probing, fluo- rescence in situ hybridization and microautoradiography. Microbiol 158:2796–2804
Lombardi, A. T., Vieira, A. A., & Sartori, L. A. (2002). Mucilaginous capsule adsorption and intracellular uptake of copper by Kirchneriella aperta (Chlorococcales). Journal of Phycology, 38(2), 332-337.
Lopez, A. R., Silva, S. C., Webb, S. M., Hesterberg, D., & Buchwalter, D. B. (2018). Periphyton and abiotic factors influencing arsenic speciation in aquatic environments. Environmental toxicology and chemistry, 37(3), 903-913.
Mackay, A. W., Felde, V. A., Morley, D. W., Piotrowska, N., Rioual, P., Seddon, A. W., & Swann, G. E. (2022). Long-term trends in diatom diversity and palaeoproductivity: a 16 000-year multidecadal record from Lake Baikal, southern Siberia. Climate of the Past, 18(2), 363-380.
Magnusson, M., Heimann, K., Ridd, M., & Negri, A. P. (2012). Chronic herbicide exposures affect the sensitivity and community structure of tropical benthic microalgae. Marine Pollution Bulletin, 65(4-9), 363-372.
McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J., & Kelly, J. J. (2014). Microplastic is an abundant and distinct microbial habitat in an urban river. Environmental science & technology, 48(20), 11863-11871.
Merchant, S. S., & Helmann, J. D. (2012). Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Advances in microbial physiology, 60, 91-210.
Miao, A. J., Schwehr, K. A., Xu, C., Zhang, S. J., Luo, Z., Quigg, A., & Santschi, P. H. (2009). The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environmental pollution, 157(11), 3034-3041.
Miao, L., Hou, J., You, G., Liu, Z., Liu, S., Li, T., ... & Qu, H. (2019b). Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification. Environmental Pollution, 255, 113300.
Mohite, B. V., Koli, S. H., Narkhede, C. P., Patil, S. N., & Patil, S. V. (2017). Prospective of microbial exopolysaccharide for heavy metal exclusion. Applied biochemistry and biotechnology, 183, 582-600.
Nava, V., & Leoni, B. (2021). A critical review of interactions between microplastics, microalgae and aquatic ecosystem function. Water research, 188, 116476.
Naveed, S., Li, C., Lu, X., Chen, S., Yin, B., Zhang, C., & Ge, Y. (2019). Microalgal extracellular polymeric substances and their interactions with metal (loid) s: A review. Critical Reviews in Environmental Science and Technology, 49(19), 1769-1802.
Olaniran, A. O., & Igbinosa, E. O. (2011). Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere, 83(10), 1297-1306.
Ozturk, S., Aslim, B., & Suludere, Z. (2010). Cadmium (II) sequestration characteristics by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Bioresource Technology, 101(24), 9742-9748.
Parrish, K., & Fahrenfeld, N. L. (2019). Microplastic biofilm in fresh-and wastewater as a function of microparticle type and size class. Environmental Science: Water Research & Technology, 5(3), 495-505.
Perelo, L. W. (2010). In situ and bioremediation of organic pollutants in aquatic sediments. Journal of hazardous materials, 177(1-3), 81-89.
Perković, L., Djedović, E., Vujović, T., Baković, M., Paradžik, T., & Čož-Rakovac, R. (2022). Biotechnological Enhancement of Probiotics through Co-Cultivation with Algae: Future or a Trend?. Marine Drugs, 20(2), 142.
Prosser, R. S., Brain, R. A., Hosmer, A. J., Solomon, K. R., & Hanson, M. L. (2013). Assessing sensitivity and recovery of field-collected periphyton acutely exposed to atrazine using PSII inhibition under laboratory conditions. Ecotoxicology, 22(9), 1367-1383
Rodríguez-Eugenio, N., McLaughlin, M., & Pennock, D. (2018). Soil pollution: a hidden reality. FAO.
Rummel, C. D., Jahnke, A., Gorokhova, E., Kühnel, D., & Schmitt-Jansen, M. (2017). Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environmental Science & Technology Letters, 4(7), 258-267.
Samuelsson, G. S. (2013). In situ remediation of contaminated sediments using thin-layer capping: efficiency in contaminant retention and ecological implications (Doctoral dissertation, Department of Ecology, Environment and Plant Sciences, Stockholm University).
Serra, A., Corcoll, N., & Guasch, H. (2009). Copper accumulation and toxicity in fluvial periphyton: the influence of exposure history. Chemosphere, 74(5), 633-641.
Shabbir, S., Faheem, M., & Wu, Y. (2018). Decolorization of high concentration crystal violet by periphyton bioreactors and potential of effluent reuse for agricultural purposes. Journal of Cleaner Production, 170, 425-436.
Shabbir, S., Faheem, M., Ali, N., Kerr, P. G., & Wu, Y. (2017). Evaluating role of immobilized periphyton in bioremediation of azo dye amaranth. Bioresource Technology, 225, 395-401.
Shabbir, S., Faheem, M., Ali, N., Kerr, P. G., Wang, L. F., Kuppusamy, S., & Li, Y. (2020). Periphytic biofilm: An innovative approach for biodegradation of microplastics. Science of the Total Environment, 717, 137064.
Shabbir, S., Faheem, M., Dar, A. A., Ali, N., Kerr, P. G., Yu, Z. G., ... & Gilfedder, B. S. (2022). Enhanced periphyton biodegradation of endocrine disrupting hormones and microplastic: Intrinsic reaction mechanism, influential humic acid and microbial community structure elucidation. Chemosphere, 293, 133515.
Sheng, G. P., Yu, H. Q., & Li, X. Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnology advances, 28(6), 882-894.
Steffan, R. J. (2019). Developing Bioremediation Technologies for Commercial Application: An Insider’s View. Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation, 21-32.
Stubbendieck, R. M., & Straight, P. D. (2016). Multifaceted interfaces of bacterial competition. Journal of bacteriology, 198(16), 2145-2155.
Sutherland, D. L., & Craggs, R. J. (2017). Utilising periphytic algae as nutrient removal systems for the treatment of diffuse nutrient pollution in waterways. Algal research, 25, 496-506.
Sutherland, D. L., Howard-Williams, C., Turnbull, M. H., Broady, P. A., & Craggs, R. J. (2015). Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production. Bioresource technology, 184, 222-229.
Tlili, A., Bérard, A., Roulier, J. L., Volat, B., & Montuelle, B. (2010). PO43− dependence of the tolerance of autotrophic and heterotrophic biofilm communities to copper and diuron. Aquatic Toxicology, 98(2), 165-177.
Tlili, A., Dorigo, U., Montuelle, B., Margoum, C., Carluer, N., Gouy, V., ... & Bérard, A. (2008). Responses of chronically contaminated biofilms to short pulses of diuron: an experimental study simulating flooding events in a small river. Aquatic Toxicology, 87(4), 252-263.
Wu, Y. (2016). Periphyton: functions and application in environmental remediation. Elsevier.
Yokota, K., Waterfield, H., Hastings, C., Davidson, E., Kwietniewski, E., & Wells, B. (2017). Finding the missing piece of the aquatic plastic pollution puzzle: interaction between primary producers and microplastics. Limnology and Oceanography Letters, 2(4), 91-104.
Zhou, J., Liu, W., Deng, Y., Jiang, Y. H., Xue, K., He, Z., ... & Wang, A. (2013). Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community. MBio, 4(2), e00584-12.